![]() |
Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prtlem11 | Structured version Visualization version GIF version |
Description: Lemma for prter2 38263. (Contributed by Rodolfo Medina, 12-Oct-2010.) |
Ref | Expression |
---|---|
prtlem11 | ⊢ (𝐵 ∈ 𝐷 → (𝐶 ∈ 𝐴 → (𝐵 = [𝐶] ∼ → 𝐵 ∈ (𝐴 / ∼ )))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eceq1 8740 | . . . 4 ⊢ (𝑥 = 𝐶 → [𝑥] ∼ = [𝐶] ∼ ) | |
2 | 1 | rspceeqv 3628 | . . 3 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐵 = [𝐶] ∼ ) → ∃𝑥 ∈ 𝐴 𝐵 = [𝑥] ∼ ) |
3 | elqsg 8761 | . . 3 ⊢ (𝐵 ∈ 𝐷 → (𝐵 ∈ (𝐴 / ∼ ) ↔ ∃𝑥 ∈ 𝐴 𝐵 = [𝑥] ∼ )) | |
4 | 2, 3 | imbitrrid 245 | . 2 ⊢ (𝐵 ∈ 𝐷 → ((𝐶 ∈ 𝐴 ∧ 𝐵 = [𝐶] ∼ ) → 𝐵 ∈ (𝐴 / ∼ ))) |
5 | 4 | expd 415 | 1 ⊢ (𝐵 ∈ 𝐷 → (𝐶 ∈ 𝐴 → (𝐵 = [𝐶] ∼ → 𝐵 ∈ (𝐴 / ∼ )))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∃wrex 3064 [cec 8700 / cqs 8701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-xp 5675 df-cnv 5677 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-ec 8704 df-qs 8708 |
This theorem is referenced by: prter2 38263 |
Copyright terms: Public domain | W3C validator |