![]() |
Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prtlem11 | Structured version Visualization version GIF version |
Description: Lemma for prter2 37751. (Contributed by Rodolfo Medina, 12-Oct-2010.) |
Ref | Expression |
---|---|
prtlem11 | ⊢ (𝐵 ∈ 𝐷 → (𝐶 ∈ 𝐴 → (𝐵 = [𝐶] ∼ → 𝐵 ∈ (𝐴 / ∼ )))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eceq1 8741 | . . . 4 ⊢ (𝑥 = 𝐶 → [𝑥] ∼ = [𝐶] ∼ ) | |
2 | 1 | rspceeqv 3634 | . . 3 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐵 = [𝐶] ∼ ) → ∃𝑥 ∈ 𝐴 𝐵 = [𝑥] ∼ ) |
3 | elqsg 8762 | . . 3 ⊢ (𝐵 ∈ 𝐷 → (𝐵 ∈ (𝐴 / ∼ ) ↔ ∃𝑥 ∈ 𝐴 𝐵 = [𝑥] ∼ )) | |
4 | 2, 3 | imbitrrid 245 | . 2 ⊢ (𝐵 ∈ 𝐷 → ((𝐶 ∈ 𝐴 ∧ 𝐵 = [𝐶] ∼ ) → 𝐵 ∈ (𝐴 / ∼ ))) |
5 | 4 | expd 417 | 1 ⊢ (𝐵 ∈ 𝐷 → (𝐶 ∈ 𝐴 → (𝐵 = [𝐶] ∼ → 𝐵 ∈ (𝐴 / ∼ )))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∃wrex 3071 [cec 8701 / cqs 8702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-cnv 5685 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-ec 8705 df-qs 8709 |
This theorem is referenced by: prter2 37751 |
Copyright terms: Public domain | W3C validator |