| Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prtlem11 | Structured version Visualization version GIF version | ||
| Description: Lemma for prter2 38859. (Contributed by Rodolfo Medina, 12-Oct-2010.) |
| Ref | Expression |
|---|---|
| prtlem11 | ⊢ (𝐵 ∈ 𝐷 → (𝐶 ∈ 𝐴 → (𝐵 = [𝐶] ∼ → 𝐵 ∈ (𝐴 / ∼ )))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eceq1 8671 | . . . 4 ⊢ (𝑥 = 𝐶 → [𝑥] ∼ = [𝐶] ∼ ) | |
| 2 | 1 | rspceeqv 3602 | . . 3 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐵 = [𝐶] ∼ ) → ∃𝑥 ∈ 𝐴 𝐵 = [𝑥] ∼ ) |
| 3 | elqsg 8698 | . . 3 ⊢ (𝐵 ∈ 𝐷 → (𝐵 ∈ (𝐴 / ∼ ) ↔ ∃𝑥 ∈ 𝐴 𝐵 = [𝑥] ∼ )) | |
| 4 | 2, 3 | imbitrrid 246 | . 2 ⊢ (𝐵 ∈ 𝐷 → ((𝐶 ∈ 𝐴 ∧ 𝐵 = [𝐶] ∼ ) → 𝐵 ∈ (𝐴 / ∼ ))) |
| 5 | 4 | expd 415 | 1 ⊢ (𝐵 ∈ 𝐷 → (𝐶 ∈ 𝐴 → (𝐵 = [𝐶] ∼ → 𝐵 ∈ (𝐴 / ∼ )))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 [cec 8630 / cqs 8631 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-cnv 5631 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ec 8634 df-qs 8638 |
| This theorem is referenced by: prter2 38859 |
| Copyright terms: Public domain | W3C validator |