Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prtlem11 Structured version   Visualization version   GIF version

Theorem prtlem11 38822
Description: Lemma for prter2 38837. (Contributed by Rodolfo Medina, 12-Oct-2010.)
Assertion
Ref Expression
prtlem11 (𝐵𝐷 → (𝐶𝐴 → (𝐵 = [𝐶] 𝐵 ∈ (𝐴 / ))))

Proof of Theorem prtlem11
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eceq1 8802 . . . 4 (𝑥 = 𝐶 → [𝑥] = [𝐶] )
21rspceeqv 3658 . . 3 ((𝐶𝐴𝐵 = [𝐶] ) → ∃𝑥𝐴 𝐵 = [𝑥] )
3 elqsg 8826 . . 3 (𝐵𝐷 → (𝐵 ∈ (𝐴 / ) ↔ ∃𝑥𝐴 𝐵 = [𝑥] ))
42, 3imbitrrid 246 . 2 (𝐵𝐷 → ((𝐶𝐴𝐵 = [𝐶] ) → 𝐵 ∈ (𝐴 / )))
54expd 415 1 (𝐵𝐷 → (𝐶𝐴 → (𝐵 = [𝐶] 𝐵 ∈ (𝐴 / ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wrex 3076  [cec 8761   / cqs 8762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ec 8765  df-qs 8769
This theorem is referenced by:  prter2  38837
  Copyright terms: Public domain W3C validator