![]() |
Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prtlem11 | Structured version Visualization version GIF version |
Description: Lemma for prter2 38862. (Contributed by Rodolfo Medina, 12-Oct-2010.) |
Ref | Expression |
---|---|
prtlem11 | ⊢ (𝐵 ∈ 𝐷 → (𝐶 ∈ 𝐴 → (𝐵 = [𝐶] ∼ → 𝐵 ∈ (𝐴 / ∼ )))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eceq1 8782 | . . . 4 ⊢ (𝑥 = 𝐶 → [𝑥] ∼ = [𝐶] ∼ ) | |
2 | 1 | rspceeqv 3644 | . . 3 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐵 = [𝐶] ∼ ) → ∃𝑥 ∈ 𝐴 𝐵 = [𝑥] ∼ ) |
3 | elqsg 8806 | . . 3 ⊢ (𝐵 ∈ 𝐷 → (𝐵 ∈ (𝐴 / ∼ ) ↔ ∃𝑥 ∈ 𝐴 𝐵 = [𝑥] ∼ )) | |
4 | 2, 3 | imbitrrid 246 | . 2 ⊢ (𝐵 ∈ 𝐷 → ((𝐶 ∈ 𝐴 ∧ 𝐵 = [𝐶] ∼ ) → 𝐵 ∈ (𝐴 / ∼ ))) |
5 | 4 | expd 415 | 1 ⊢ (𝐵 ∈ 𝐷 → (𝐶 ∈ 𝐴 → (𝐵 = [𝐶] ∼ → 𝐵 ∈ (𝐴 / ∼ )))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∃wrex 3067 [cec 8741 / cqs 8742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-xp 5694 df-cnv 5696 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-ec 8745 df-qs 8749 |
This theorem is referenced by: prter2 38862 |
Copyright terms: Public domain | W3C validator |