| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relopabv | Structured version Visualization version GIF version | ||
| Description: A class of ordered pairs is a relation. For a version without a disjoint variable condition, but using ax-11 2158 and ax-12 2178, see relopab 5778. (Contributed by SN, 8-Sep-2024.) |
| Ref | Expression |
|---|---|
| relopabv | ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 2 | 1 | relopabiv 5774 | 1 ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: {copab 5164 Rel wrel 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-ss 3928 df-opab 5165 df-xp 5637 df-rel 5638 |
| This theorem is referenced by: opabid2 5782 inopab 5783 difopab 5784 dfres2 6001 cnvopab 6098 cnvopabOLD 6099 funopab 6535 elopabi 8020 relmpoopab 8050 shftfn 15015 cicer 17748 joindmss 18318 meetdmss 18332 lgsquadlem3 27326 tgjustf 28453 perpln1 28690 perpln2 28691 fpwrelmapffslem 32705 fpwrelmap 32706 relfae 34230 satfrel 35347 xpab 35706 vvdifopab 38242 inxprnres 38273 prtlem12 38853 dicvalrelN 41172 diclspsn 41181 dih1dimatlem 41316 rfovcnvf1od 43986 |
| Copyright terms: Public domain | W3C validator |