![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relopabv | Structured version Visualization version GIF version |
Description: A class of ordered pairs is a relation. For a version without a disjoint variable condition, but using ax-11 2154 and ax-12 2171, see relopab 5824. (Contributed by SN, 8-Sep-2024.) |
Ref | Expression |
---|---|
relopabv | ⊢ Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑦⟩ ∣ 𝜑} | |
2 | 1 | relopabiv 5820 | 1 ⊢ Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: {copab 5210 Rel wrel 5681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-in 3955 df-ss 3965 df-opab 5211 df-xp 5682 df-rel 5683 |
This theorem is referenced by: opabid2 5828 inopab 5829 difopab 5830 difopabOLD 5831 dfres2 6041 cnvopab 6138 funopab 6583 elopabi 8050 relmpoopab 8082 shftfn 15022 cicer 17755 joindmss 18334 meetdmss 18348 lgsquadlem3 26892 tgjustf 27762 perpln1 27999 perpln2 28000 fpwrelmapffslem 31995 fpwrelmap 31996 relfae 33314 satfrel 34427 xpab 34764 vvdifopab 37214 inxprnres 37247 prtlem12 37823 dicvalrelN 40142 diclspsn 40151 dih1dimatlem 40286 rfovcnvf1od 42837 |
Copyright terms: Public domain | W3C validator |