![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relopabv | Structured version Visualization version GIF version |
Description: A class of ordered pairs is a relation. For a version without a disjoint variable condition, but using ax-11 2158 and ax-12 2178, see relopab 5848. (Contributed by SN, 8-Sep-2024.) |
Ref | Expression |
---|---|
relopabv | ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
2 | 1 | relopabiv 5844 | 1 ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: {copab 5228 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-opab 5229 df-xp 5706 df-rel 5707 |
This theorem is referenced by: opabid2 5852 inopab 5853 difopab 5854 difopabOLD 5855 dfres2 6070 cnvopab 6169 cnvopabOLD 6170 funopab 6613 elopabi 8103 relmpoopab 8135 shftfn 15122 cicer 17867 joindmss 18449 meetdmss 18463 lgsquadlem3 27444 tgjustf 28499 perpln1 28736 perpln2 28737 fpwrelmapffslem 32746 fpwrelmap 32747 relfae 34211 satfrel 35335 xpab 35688 vvdifopab 38216 inxprnres 38248 prtlem12 38823 dicvalrelN 41142 diclspsn 41151 dih1dimatlem 41286 rfovcnvf1od 43966 |
Copyright terms: Public domain | W3C validator |