| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relopabv | Structured version Visualization version GIF version | ||
| Description: A class of ordered pairs is a relation. For a version without a disjoint variable condition, but using ax-11 2158 and ax-12 2178, see relopab 5808. (Contributed by SN, 8-Sep-2024.) |
| Ref | Expression |
|---|---|
| relopabv | ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 2 | 1 | relopabiv 5804 | 1 ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: {copab 5186 Rel wrel 5664 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-ss 3948 df-opab 5187 df-xp 5665 df-rel 5666 |
| This theorem is referenced by: opabid2 5812 inopab 5813 difopab 5814 difopabOLD 5815 dfres2 6033 cnvopab 6131 cnvopabOLD 6132 funopab 6576 elopabi 8066 relmpoopab 8098 shftfn 15097 cicer 17824 joindmss 18394 meetdmss 18408 lgsquadlem3 27350 tgjustf 28457 perpln1 28694 perpln2 28695 fpwrelmapffslem 32714 fpwrelmap 32715 relfae 34283 satfrel 35394 xpab 35748 vvdifopab 38283 inxprnres 38315 prtlem12 38890 dicvalrelN 41209 diclspsn 41218 dih1dimatlem 41353 rfovcnvf1od 43995 |
| Copyright terms: Public domain | W3C validator |