| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relopabv | Structured version Visualization version GIF version | ||
| Description: A class of ordered pairs is a relation. For a version without a disjoint variable condition, but using ax-11 2158 and ax-12 2178, see relopab 5787. (Contributed by SN, 8-Sep-2024.) |
| Ref | Expression |
|---|---|
| relopabv | ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 2 | 1 | relopabiv 5783 | 1 ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: {copab 5169 Rel wrel 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-opab 5170 df-xp 5644 df-rel 5645 |
| This theorem is referenced by: opabid2 5791 inopab 5792 difopab 5793 difopabOLD 5794 dfres2 6012 cnvopab 6110 cnvopabOLD 6111 funopab 6551 elopabi 8041 relmpoopab 8073 shftfn 15039 cicer 17768 joindmss 18338 meetdmss 18352 lgsquadlem3 27293 tgjustf 28400 perpln1 28637 perpln2 28638 fpwrelmapffslem 32655 fpwrelmap 32656 relfae 34237 satfrel 35354 xpab 35713 vvdifopab 38249 inxprnres 38280 prtlem12 38860 dicvalrelN 41179 diclspsn 41188 dih1dimatlem 41323 rfovcnvf1od 43993 |
| Copyright terms: Public domain | W3C validator |