Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relopabv | Structured version Visualization version GIF version |
Description: A class of ordered pairs is a relation. For a version without a disjoint variable condition, but using ax-11 2154 and ax-12 2171, see relopab 5734. (Contributed by SN, 8-Sep-2024.) |
Ref | Expression |
---|---|
relopabv | ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
2 | 1 | relopabiv 5730 | 1 ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: {copab 5136 Rel wrel 5594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-opab 5137 df-xp 5595 df-rel 5596 |
This theorem is referenced by: opabid2 5738 inopab 5739 difopab 5740 dfres2 5949 cnvopab 6042 funopab 6469 elopabi 7902 relmpoopab 7934 shftfn 14784 cicer 17518 joindmss 18097 meetdmss 18111 lgsquadlem3 26530 tgjustf 26834 perpln1 27071 perpln2 27072 fpwrelmapffslem 31067 fpwrelmap 31068 relfae 32215 satfrel 33329 xpab 33677 vvdifopab 36399 inxprnres 36427 prtlem12 36881 dicvalrelN 39199 diclspsn 39208 dih1dimatlem 39343 rfovcnvf1od 41612 |
Copyright terms: Public domain | W3C validator |