| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relopabv | Structured version Visualization version GIF version | ||
| Description: A class of ordered pairs is a relation. For a version without a disjoint variable condition, but using ax-11 2158 and ax-12 2178, see relopab 5790. (Contributed by SN, 8-Sep-2024.) |
| Ref | Expression |
|---|---|
| relopabv | ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 2 | 1 | relopabiv 5786 | 1 ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: {copab 5172 Rel wrel 5646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-opab 5173 df-xp 5647 df-rel 5648 |
| This theorem is referenced by: opabid2 5794 inopab 5795 difopab 5796 difopabOLD 5797 dfres2 6015 cnvopab 6113 cnvopabOLD 6114 funopab 6554 elopabi 8044 relmpoopab 8076 shftfn 15046 cicer 17775 joindmss 18345 meetdmss 18359 lgsquadlem3 27300 tgjustf 28407 perpln1 28644 perpln2 28645 fpwrelmapffslem 32662 fpwrelmap 32663 relfae 34244 satfrel 35361 xpab 35720 vvdifopab 38256 inxprnres 38287 prtlem12 38867 dicvalrelN 41186 diclspsn 41195 dih1dimatlem 41330 rfovcnvf1od 44000 |
| Copyright terms: Public domain | W3C validator |