| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relopabv | Structured version Visualization version GIF version | ||
| Description: A class of ordered pairs is a relation. For a version without a disjoint variable condition, but using ax-11 2160 and ax-12 2180, see relopab 5763. (Contributed by SN, 8-Sep-2024.) |
| Ref | Expression |
|---|---|
| relopabv | ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 2 | 1 | relopabiv 5759 | 1 ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: {copab 5151 Rel wrel 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3914 df-opab 5152 df-xp 5620 df-rel 5621 |
| This theorem is referenced by: opabid2 5767 inopab 5768 difopab 5769 dfres2 5989 cnvopab 6083 cnvopabOLD 6084 funopab 6516 elopabi 7994 relmpoopab 8024 shftfn 14980 cicer 17713 joindmss 18283 meetdmss 18297 lgsquadlem3 27320 tgjustf 28451 perpln1 28688 perpln2 28689 fpwrelmapffslem 32715 fpwrelmap 32716 relfae 34260 satfrel 35411 xpab 35770 vvdifopab 38296 inxprnres 38329 prtlem12 38965 dicvalrelN 41283 diclspsn 41292 dih1dimatlem 41427 rfovcnvf1od 44096 |
| Copyright terms: Public domain | W3C validator |