| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relopabv | Structured version Visualization version GIF version | ||
| Description: A class of ordered pairs is a relation. For a version without a disjoint variable condition, but using ax-11 2158 and ax-12 2178, see relopab 5778. (Contributed by SN, 8-Sep-2024.) |
| Ref | Expression |
|---|---|
| relopabv | ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 2 | 1 | relopabiv 5774 | 1 ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: {copab 5164 Rel wrel 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-ss 3928 df-opab 5165 df-xp 5637 df-rel 5638 |
| This theorem is referenced by: opabid2 5782 inopab 5783 difopab 5784 dfres2 6001 cnvopab 6098 cnvopabOLD 6099 funopab 6535 elopabi 8020 relmpoopab 8050 shftfn 15016 cicer 17749 joindmss 18319 meetdmss 18333 lgsquadlem3 27327 tgjustf 28454 perpln1 28691 perpln2 28692 fpwrelmapffslem 32706 fpwrelmap 32707 relfae 34231 satfrel 35348 xpab 35707 vvdifopab 38243 inxprnres 38274 prtlem12 38854 dicvalrelN 41173 diclspsn 41182 dih1dimatlem 41317 rfovcnvf1od 43987 |
| Copyright terms: Public domain | W3C validator |