Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relopabv | Structured version Visualization version GIF version |
Description: A class of ordered pairs is a relation. For a version without a disjoint variable condition, but using ax-11 2154 and ax-12 2171, see relopab 5727. (Contributed by SN, 8-Sep-2024.) |
Ref | Expression |
---|---|
relopabv | ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
2 | 1 | relopabiv 5723 | 1 ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: {copab 5135 Rel wrel 5589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3431 df-in 3893 df-ss 3903 df-opab 5136 df-xp 5590 df-rel 5591 |
This theorem is referenced by: opabid2 5731 inopab 5732 difopab 5733 dfres2 5942 cnvopab 6035 funopab 6461 elopabi 7891 relmpoopab 7921 shftfn 14794 cicer 17528 joindmss 18107 meetdmss 18121 lgsquadlem3 26540 tgjustf 26844 perpln1 27081 perpln2 27082 fpwrelmapffslem 31075 fpwrelmap 31076 relfae 32223 satfrel 33337 xpab 33685 vvdifopab 36407 inxprnres 36435 prtlem12 36889 dicvalrelN 39207 diclspsn 39216 dih1dimatlem 39351 rfovcnvf1od 41593 |
Copyright terms: Public domain | W3C validator |