Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relopabv | Structured version Visualization version GIF version |
Description: A class of ordered pairs is a relation. For a version without a disjoint variable condition, but using ax-11 2156 and ax-12 2173, see relopab 5723. (Contributed by SN, 8-Sep-2024.) |
Ref | Expression |
---|---|
relopabv | ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
2 | 1 | relopabiv 5719 | 1 ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: {copab 5132 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-opab 5133 df-xp 5586 df-rel 5587 |
This theorem is referenced by: opabid2 5727 inopab 5728 difopab 5729 dfres2 5938 cnvopab 6031 funopab 6453 elopabi 7875 relmpoopab 7905 shftfn 14712 cicer 17435 joindmss 18012 meetdmss 18026 lgsquadlem3 26435 tgjustf 26738 perpln1 26975 perpln2 26976 fpwrelmapffslem 30969 fpwrelmap 30970 relfae 32115 satfrel 33229 xpab 33579 vvdifopab 36326 inxprnres 36354 prtlem12 36808 dicvalrelN 39126 diclspsn 39135 dih1dimatlem 39270 rfovcnvf1od 41501 |
Copyright terms: Public domain | W3C validator |