![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relopabv | Structured version Visualization version GIF version |
Description: A class of ordered pairs is a relation. For a version without a disjoint variable condition, but using ax-11 2155 and ax-12 2175, see relopab 5837. (Contributed by SN, 8-Sep-2024.) |
Ref | Expression |
---|---|
relopabv | ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
2 | 1 | relopabiv 5833 | 1 ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: {copab 5210 Rel wrel 5694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-ss 3980 df-opab 5211 df-xp 5695 df-rel 5696 |
This theorem is referenced by: opabid2 5841 inopab 5842 difopab 5843 difopabOLD 5844 dfres2 6061 cnvopab 6160 cnvopabOLD 6161 funopab 6603 elopabi 8086 relmpoopab 8118 shftfn 15109 cicer 17854 joindmss 18437 meetdmss 18451 lgsquadlem3 27441 tgjustf 28496 perpln1 28733 perpln2 28734 fpwrelmapffslem 32750 fpwrelmap 32751 relfae 34228 satfrel 35352 xpab 35706 vvdifopab 38242 inxprnres 38274 prtlem12 38849 dicvalrelN 41168 diclspsn 41177 dih1dimatlem 41312 rfovcnvf1od 43994 |
Copyright terms: Public domain | W3C validator |