| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relopabv | Structured version Visualization version GIF version | ||
| Description: A class of ordered pairs is a relation. For a version without a disjoint variable condition, but using ax-11 2158 and ax-12 2178, see relopab 5767. (Contributed by SN, 8-Sep-2024.) |
| Ref | Expression |
|---|---|
| relopabv | ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 2 | 1 | relopabiv 5763 | 1 ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: {copab 5154 Rel wrel 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-ss 3920 df-opab 5155 df-xp 5625 df-rel 5626 |
| This theorem is referenced by: opabid2 5771 inopab 5772 difopab 5773 dfres2 5992 cnvopab 6086 cnvopabOLD 6087 funopab 6517 elopabi 7997 relmpoopab 8027 shftfn 14980 cicer 17713 joindmss 18283 meetdmss 18297 lgsquadlem3 27291 tgjustf 28422 perpln1 28659 perpln2 28660 fpwrelmapffslem 32684 fpwrelmap 32685 relfae 34230 satfrel 35360 xpab 35719 vvdifopab 38255 inxprnres 38286 prtlem12 38866 dicvalrelN 41184 diclspsn 41193 dih1dimatlem 41328 rfovcnvf1od 43997 |
| Copyright terms: Public domain | W3C validator |