![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relopabv | Structured version Visualization version GIF version |
Description: A class of ordered pairs is a relation. For a version without a disjoint variable condition, but using ax-11 2147 and ax-12 2164, see relopab 5820. (Contributed by SN, 8-Sep-2024.) |
Ref | Expression |
---|---|
relopabv | ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2727 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
2 | 1 | relopabiv 5816 | 1 ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: {copab 5204 Rel wrel 5677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-v 3471 df-in 3951 df-ss 3961 df-opab 5205 df-xp 5678 df-rel 5679 |
This theorem is referenced by: opabid2 5824 inopab 5825 difopab 5826 difopabOLD 5827 dfres2 6039 cnvopab 6137 funopab 6582 elopabi 8058 relmpoopab 8091 shftfn 15038 cicer 17774 joindmss 18356 meetdmss 18370 lgsquadlem3 27289 tgjustf 28251 perpln1 28488 perpln2 28489 fpwrelmapffslem 32485 fpwrelmap 32486 relfae 33789 satfrel 34900 xpab 35243 vvdifopab 37654 inxprnres 37687 prtlem12 38263 dicvalrelN 40582 diclspsn 40591 dih1dimatlem 40726 rfovcnvf1od 43347 |
Copyright terms: Public domain | W3C validator |