MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  releq Structured version   Visualization version   GIF version

Theorem releq 5717
Description: Equality theorem for the relation predicate. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
releq (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵))

Proof of Theorem releq
StepHypRef Expression
1 sseq1 3960 . 2 (𝐴 = 𝐵 → (𝐴 ⊆ (V × V) ↔ 𝐵 ⊆ (V × V)))
2 df-rel 5623 . 2 (Rel 𝐴𝐴 ⊆ (V × V))
3 df-rel 5623 . 2 (Rel 𝐵𝐵 ⊆ (V × V))
41, 2, 33bitr4g 314 1 (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  Vcvv 3436  wss 3902   × cxp 5614  Rel wrel 5621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-cleq 2723  df-ss 3919  df-rel 5623
This theorem is referenced by:  releqi  5718  releqd  5719  relsnb  5742  dfrel2  6136  tposfn2  8178  ereq1  8629  isps  18474  isdir  18504  fpwrelmapffslem  32713  bnj1321  35037  refreleq  38564  symreleq  38601  trreleq  38625  prtlem12  38912  relintabex  43620  clrellem  43661  clcnvlem  43662  rellan  49661  relran  49662
  Copyright terms: Public domain W3C validator