MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  releq Structured version   Visualization version   GIF version

Theorem releq 5723
Description: Equality theorem for the relation predicate. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
releq (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵))

Proof of Theorem releq
StepHypRef Expression
1 sseq1 3956 . 2 (𝐴 = 𝐵 → (𝐴 ⊆ (V × V) ↔ 𝐵 ⊆ (V × V)))
2 df-rel 5628 . 2 (Rel 𝐴𝐴 ⊆ (V × V))
3 df-rel 5628 . 2 (Rel 𝐵𝐵 ⊆ (V × V))
41, 2, 33bitr4g 314 1 (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  Vcvv 3437  wss 3898   × cxp 5619  Rel wrel 5626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-cleq 2725  df-ss 3915  df-rel 5628
This theorem is referenced by:  releqi  5724  releqd  5725  relsnb  5748  dfrel2  6144  tposfn2  8187  ereq1  8638  isps  18482  isdir  18512  fpwrelmapffslem  32739  bnj1321  35111  refreleq  38686  symreleq  38727  trreleq  38751  prtlem12  39039  relintabex  43738  clrellem  43779  clcnvlem  43780  rellan  49784  relran  49785
  Copyright terms: Public domain W3C validator