![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > releq | Structured version Visualization version GIF version |
Description: Equality theorem for the relation predicate. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
releq | ⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1 4034 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ (V × V) ↔ 𝐵 ⊆ (V × V))) | |
2 | df-rel 5707 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
3 | df-rel 5707 | . 2 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
4 | 1, 2, 3 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 Vcvv 3488 ⊆ wss 3976 × cxp 5698 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ss 3993 df-rel 5707 |
This theorem is referenced by: releqi 5801 releqd 5802 relsnb 5826 dfrel2 6220 tposfn2 8289 ereq1 8770 isps 18638 isdir 18668 fpwrelmapffslem 32746 bnj1321 35003 refreleq 38477 symreleq 38514 trreleq 38538 prtlem12 38823 relintabex 43543 clrellem 43584 clcnvlem 43585 |
Copyright terms: Public domain | W3C validator |