MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  releq Structured version   Visualization version   GIF version

Theorem releq 5789
Description: Equality theorem for the relation predicate. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
releq (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵))

Proof of Theorem releq
StepHypRef Expression
1 sseq1 4021 . 2 (𝐴 = 𝐵 → (𝐴 ⊆ (V × V) ↔ 𝐵 ⊆ (V × V)))
2 df-rel 5696 . 2 (Rel 𝐴𝐴 ⊆ (V × V))
3 df-rel 5696 . 2 (Rel 𝐵𝐵 ⊆ (V × V))
41, 2, 33bitr4g 314 1 (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  Vcvv 3478  wss 3963   × cxp 5687  Rel wrel 5694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1777  df-cleq 2727  df-ss 3980  df-rel 5696
This theorem is referenced by:  releqi  5790  releqd  5791  relsnb  5815  dfrel2  6211  tposfn2  8272  ereq1  8751  isps  18626  isdir  18656  fpwrelmapffslem  32750  bnj1321  35020  refreleq  38503  symreleq  38540  trreleq  38564  prtlem12  38849  relintabex  43571  clrellem  43612  clcnvlem  43613
  Copyright terms: Public domain W3C validator