| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > releq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the relation predicate. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| releq | ⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 3975 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ (V × V) ↔ 𝐵 ⊆ (V × V))) | |
| 2 | df-rel 5648 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
| 3 | df-rel 5648 | . 2 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
| 4 | 1, 2, 3 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 Vcvv 3450 ⊆ wss 3917 × cxp 5639 Rel wrel 5646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-ss 3934 df-rel 5648 |
| This theorem is referenced by: releqi 5743 releqd 5744 relsnb 5768 dfrel2 6165 tposfn2 8230 ereq1 8681 isps 18534 isdir 18564 fpwrelmapffslem 32662 bnj1321 35024 refreleq 38519 symreleq 38556 trreleq 38580 prtlem12 38867 relintabex 43577 clrellem 43618 clcnvlem 43619 rellan 49616 relran 49617 |
| Copyright terms: Public domain | W3C validator |