MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  releq Structured version   Visualization version   GIF version

Theorem releq 5786
Description: Equality theorem for the relation predicate. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
releq (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵))

Proof of Theorem releq
StepHypRef Expression
1 sseq1 4009 . 2 (𝐴 = 𝐵 → (𝐴 ⊆ (V × V) ↔ 𝐵 ⊆ (V × V)))
2 df-rel 5692 . 2 (Rel 𝐴𝐴 ⊆ (V × V))
3 df-rel 5692 . 2 (Rel 𝐵𝐵 ⊆ (V × V))
41, 2, 33bitr4g 314 1 (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  Vcvv 3480  wss 3951   × cxp 5683  Rel wrel 5690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2729  df-ss 3968  df-rel 5692
This theorem is referenced by:  releqi  5787  releqd  5788  relsnb  5812  dfrel2  6209  tposfn2  8273  ereq1  8752  isps  18613  isdir  18643  fpwrelmapffslem  32743  bnj1321  35041  refreleq  38522  symreleq  38559  trreleq  38583  prtlem12  38868  relintabex  43594  clrellem  43635  clcnvlem  43636
  Copyright terms: Public domain W3C validator