![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > releq | Structured version Visualization version GIF version |
Description: Equality theorem for the relation predicate. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
releq | ⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1 4021 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ (V × V) ↔ 𝐵 ⊆ (V × V))) | |
2 | df-rel 5696 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
3 | df-rel 5696 | . 2 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
4 | 1, 2, 3 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 Vcvv 3478 ⊆ wss 3963 × cxp 5687 Rel wrel 5694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 df-ss 3980 df-rel 5696 |
This theorem is referenced by: releqi 5790 releqd 5791 relsnb 5815 dfrel2 6211 tposfn2 8272 ereq1 8751 isps 18626 isdir 18656 fpwrelmapffslem 32750 bnj1321 35020 refreleq 38503 symreleq 38540 trreleq 38564 prtlem12 38849 relintabex 43571 clrellem 43612 clcnvlem 43613 |
Copyright terms: Public domain | W3C validator |