MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  releq Structured version   Visualization version   GIF version

Theorem releq 5739
Description: Equality theorem for the relation predicate. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
releq (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵))

Proof of Theorem releq
StepHypRef Expression
1 sseq1 3972 . 2 (𝐴 = 𝐵 → (𝐴 ⊆ (V × V) ↔ 𝐵 ⊆ (V × V)))
2 df-rel 5645 . 2 (Rel 𝐴𝐴 ⊆ (V × V))
3 df-rel 5645 . 2 (Rel 𝐵𝐵 ⊆ (V × V))
41, 2, 33bitr4g 314 1 (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  Vcvv 3447  wss 3914   × cxp 5636  Rel wrel 5643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2721  df-ss 3931  df-rel 5645
This theorem is referenced by:  releqi  5740  releqd  5741  relsnb  5765  dfrel2  6162  tposfn2  8227  ereq1  8678  isps  18527  isdir  18557  fpwrelmapffslem  32655  bnj1321  35017  refreleq  38512  symreleq  38549  trreleq  38573  prtlem12  38860  relintabex  43570  clrellem  43611  clcnvlem  43612  rellan  49612  relran  49613
  Copyright terms: Public domain W3C validator