MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  releq Structured version   Visualization version   GIF version

Theorem releq 5685
Description: Equality theorem for the relation predicate. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
releq (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵))

Proof of Theorem releq
StepHypRef Expression
1 sseq1 3950 . 2 (𝐴 = 𝐵 → (𝐴 ⊆ (V × V) ↔ 𝐵 ⊆ (V × V)))
2 df-rel 5595 . 2 (Rel 𝐴𝐴 ⊆ (V × V))
3 df-rel 5595 . 2 (Rel 𝐵𝐵 ⊆ (V × V))
41, 2, 33bitr4g 313 1 (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  Vcvv 3430  wss 3891   × cxp 5586  Rel wrel 5593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-v 3432  df-in 3898  df-ss 3908  df-rel 5595
This theorem is referenced by:  releqi  5686  releqd  5687  relsnb  5709  dfrel2  6089  tposfn2  8048  ereq1  8479  isps  18267  isdir  18297  fpwrelmapffslem  31046  bnj1321  32986  refreleq  36617  symreleq  36651  trreleq  36675  prtlem12  36860  relintabex  41142  clrellem  41183  clcnvlem  41184
  Copyright terms: Public domain W3C validator