| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > releq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the relation predicate. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| releq | ⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 3956 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ (V × V) ↔ 𝐵 ⊆ (V × V))) | |
| 2 | df-rel 5628 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
| 3 | df-rel 5628 | . 2 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
| 4 | 1, 2, 3 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 Vcvv 3437 ⊆ wss 3898 × cxp 5619 Rel wrel 5626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-ss 3915 df-rel 5628 |
| This theorem is referenced by: releqi 5724 releqd 5725 relsnb 5748 dfrel2 6144 tposfn2 8187 ereq1 8638 isps 18482 isdir 18512 fpwrelmapffslem 32739 bnj1321 35111 refreleq 38686 symreleq 38727 trreleq 38751 prtlem12 39039 relintabex 43738 clrellem 43779 clcnvlem 43780 rellan 49784 relran 49785 |
| Copyright terms: Public domain | W3C validator |