MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  releq Structured version   Visualization version   GIF version

Theorem releq 5724
Description: Equality theorem for the relation predicate. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
releq (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵))

Proof of Theorem releq
StepHypRef Expression
1 sseq1 3963 . 2 (𝐴 = 𝐵 → (𝐴 ⊆ (V × V) ↔ 𝐵 ⊆ (V × V)))
2 df-rel 5630 . 2 (Rel 𝐴𝐴 ⊆ (V × V))
3 df-rel 5630 . 2 (Rel 𝐵𝐵 ⊆ (V × V))
41, 2, 33bitr4g 314 1 (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  Vcvv 3438  wss 3905   × cxp 5621  Rel wrel 5628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2721  df-ss 3922  df-rel 5630
This theorem is referenced by:  releqi  5725  releqd  5726  relsnb  5749  dfrel2  6142  tposfn2  8188  ereq1  8639  isps  18492  isdir  18522  fpwrelmapffslem  32688  bnj1321  34996  refreleq  38500  symreleq  38537  trreleq  38561  prtlem12  38848  relintabex  43557  clrellem  43598  clcnvlem  43599  rellan  49612  relran  49613
  Copyright terms: Public domain W3C validator