MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  releq Structured version   Visualization version   GIF version

Theorem releq 5677
Description: Equality theorem for the relation predicate. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
releq (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵))

Proof of Theorem releq
StepHypRef Expression
1 sseq1 3942 . 2 (𝐴 = 𝐵 → (𝐴 ⊆ (V × V) ↔ 𝐵 ⊆ (V × V)))
2 df-rel 5587 . 2 (Rel 𝐴𝐴 ⊆ (V × V))
3 df-rel 5587 . 2 (Rel 𝐵𝐵 ⊆ (V × V))
41, 2, 33bitr4g 313 1 (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  Vcvv 3422  wss 3883   × cxp 5578  Rel wrel 5585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900  df-rel 5587
This theorem is referenced by:  releqi  5678  releqd  5679  relsnb  5701  dfrel2  6081  tposfn2  8035  ereq1  8463  isps  18201  isdir  18231  fpwrelmapffslem  30969  bnj1321  32907  refreleq  36565  symreleq  36599  trreleq  36623  prtlem12  36808  relintabex  41078  clrellem  41119  clcnvlem  41120
  Copyright terms: Public domain W3C validator