| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > releq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the relation predicate. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| releq | ⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 3984 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ (V × V) ↔ 𝐵 ⊆ (V × V))) | |
| 2 | df-rel 5661 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
| 3 | df-rel 5661 | . 2 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
| 4 | 1, 2, 3 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 Vcvv 3459 ⊆ wss 3926 × cxp 5652 Rel wrel 5659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-ss 3943 df-rel 5661 |
| This theorem is referenced by: releqi 5756 releqd 5757 relsnb 5781 dfrel2 6178 tposfn2 8247 ereq1 8726 isps 18578 isdir 18608 fpwrelmapffslem 32709 bnj1321 35058 refreleq 38539 symreleq 38576 trreleq 38600 prtlem12 38885 relintabex 43605 clrellem 43646 clcnvlem 43647 rellan 49498 relran 49499 |
| Copyright terms: Public domain | W3C validator |