MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  releq Structured version   Visualization version   GIF version

Theorem releq 5755
Description: Equality theorem for the relation predicate. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
releq (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵))

Proof of Theorem releq
StepHypRef Expression
1 sseq1 3984 . 2 (𝐴 = 𝐵 → (𝐴 ⊆ (V × V) ↔ 𝐵 ⊆ (V × V)))
2 df-rel 5661 . 2 (Rel 𝐴𝐴 ⊆ (V × V))
3 df-rel 5661 . 2 (Rel 𝐵𝐵 ⊆ (V × V))
41, 2, 33bitr4g 314 1 (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  Vcvv 3459  wss 3926   × cxp 5652  Rel wrel 5659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2727  df-ss 3943  df-rel 5661
This theorem is referenced by:  releqi  5756  releqd  5757  relsnb  5781  dfrel2  6178  tposfn2  8247  ereq1  8726  isps  18578  isdir  18608  fpwrelmapffslem  32709  bnj1321  35058  refreleq  38539  symreleq  38576  trreleq  38600  prtlem12  38885  relintabex  43605  clrellem  43646  clcnvlem  43647  rellan  49498  relran  49499
  Copyright terms: Public domain W3C validator