MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  releq Structured version   Visualization version   GIF version

Theorem releq 5775
Description: Equality theorem for the relation predicate. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
releq (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵))

Proof of Theorem releq
StepHypRef Expression
1 sseq1 4007 . 2 (𝐴 = 𝐵 → (𝐴 ⊆ (V × V) ↔ 𝐵 ⊆ (V × V)))
2 df-rel 5683 . 2 (Rel 𝐴𝐴 ⊆ (V × V))
3 df-rel 5683 . 2 (Rel 𝐵𝐵 ⊆ (V × V))
41, 2, 33bitr4g 314 1 (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1542  Vcvv 3475  wss 3948   × cxp 5674  Rel wrel 5681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-in 3955  df-ss 3965  df-rel 5683
This theorem is referenced by:  releqi  5776  releqd  5777  relsnb  5801  dfrel2  6186  tposfn2  8230  ereq1  8707  isps  18518  isdir  18548  fpwrelmapffslem  31945  bnj1321  34027  refreleq  37380  symreleq  37417  trreleq  37441  prtlem12  37726  relintabex  42318  clrellem  42359  clcnvlem  42360
  Copyright terms: Public domain W3C validator