MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  releq Structured version   Visualization version   GIF version

Theorem releq 5742
Description: Equality theorem for the relation predicate. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
releq (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵))

Proof of Theorem releq
StepHypRef Expression
1 sseq1 3975 . 2 (𝐴 = 𝐵 → (𝐴 ⊆ (V × V) ↔ 𝐵 ⊆ (V × V)))
2 df-rel 5648 . 2 (Rel 𝐴𝐴 ⊆ (V × V))
3 df-rel 5648 . 2 (Rel 𝐵𝐵 ⊆ (V × V))
41, 2, 33bitr4g 314 1 (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  Vcvv 3450  wss 3917   × cxp 5639  Rel wrel 5646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2722  df-ss 3934  df-rel 5648
This theorem is referenced by:  releqi  5743  releqd  5744  relsnb  5768  dfrel2  6165  tposfn2  8230  ereq1  8681  isps  18534  isdir  18564  fpwrelmapffslem  32662  bnj1321  35024  refreleq  38519  symreleq  38556  trreleq  38580  prtlem12  38867  relintabex  43577  clrellem  43618  clcnvlem  43619  rellan  49616  relran  49617
  Copyright terms: Public domain W3C validator