![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwin | Structured version Visualization version GIF version |
Description: The power class of the intersection of two classes is the intersection of their power classes. Exercise 4.12(j) of [Mendelson] p. 235. (Contributed by NM, 23-Nov-2003.) |
Ref | Expression |
---|---|
pwin | ⊢ 𝒫 (𝐴 ∩ 𝐵) = (𝒫 𝐴 ∩ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssin 4054 | . . . 4 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝐵) ↔ 𝑥 ⊆ (𝐴 ∩ 𝐵)) | |
2 | selpw 4385 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
3 | selpw 4385 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵) | |
4 | 2, 3 | anbi12i 620 | . . . 4 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ∈ 𝒫 𝐵) ↔ (𝑥 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝐵)) |
5 | selpw 4385 | . . . 4 ⊢ (𝑥 ∈ 𝒫 (𝐴 ∩ 𝐵) ↔ 𝑥 ⊆ (𝐴 ∩ 𝐵)) | |
6 | 1, 4, 5 | 3bitr4i 295 | . . 3 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ∈ 𝒫 𝐵) ↔ 𝑥 ∈ 𝒫 (𝐴 ∩ 𝐵)) |
7 | 6 | ineqri 4028 | . 2 ⊢ (𝒫 𝐴 ∩ 𝒫 𝐵) = 𝒫 (𝐴 ∩ 𝐵) |
8 | 7 | eqcomi 2786 | 1 ⊢ 𝒫 (𝐴 ∩ 𝐵) = (𝒫 𝐴 ∩ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 386 = wceq 1601 ∈ wcel 2106 ∩ cin 3790 ⊆ wss 3791 𝒫 cpw 4378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-ext 2753 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-v 3399 df-in 3798 df-ss 3805 df-pw 4380 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |