MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwin Structured version   Visualization version   GIF version

Theorem pwin 5544
Description: The power class of the intersection of two classes is the intersection of their power classes. Exercise 4.12(j) of [Mendelson] p. 235. (Contributed by NM, 23-Nov-2003.)
Assertion
Ref Expression
pwin 𝒫 (𝐴𝐵) = (𝒫 𝐴 ∩ 𝒫 𝐵)

Proof of Theorem pwin
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssin 4214 . . . 4 ((𝑥𝐴𝑥𝐵) ↔ 𝑥 ⊆ (𝐴𝐵))
2 velpw 4580 . . . . 5 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
3 velpw 4580 . . . . 5 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
42, 3anbi12i 628 . . . 4 ((𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵) ↔ (𝑥𝐴𝑥𝐵))
5 velpw 4580 . . . 4 (𝑥 ∈ 𝒫 (𝐴𝐵) ↔ 𝑥 ⊆ (𝐴𝐵))
61, 4, 53bitr4i 303 . . 3 ((𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵) ↔ 𝑥 ∈ 𝒫 (𝐴𝐵))
76ineqri 4187 . 2 (𝒫 𝐴 ∩ 𝒫 𝐵) = 𝒫 (𝐴𝐵)
87eqcomi 2744 1 𝒫 (𝐴𝐵) = (𝒫 𝐴 ∩ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2108  cin 3925  wss 3926  𝒫 cpw 4575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-v 3461  df-in 3933  df-ss 3943  df-pw 4577
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator