MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssin Structured version   Visualization version   GIF version

Theorem ssin 4230
Description: Subclass of intersection. Theorem 2.8(vii) of [Monk1] p. 26. (Contributed by NM, 15-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
ssin ((𝐴𝐵𝐴𝐶) ↔ 𝐴 ⊆ (𝐵𝐶))

Proof of Theorem ssin
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3964 . . . . 5 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
21imbi2i 335 . . . 4 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 → (𝑥𝐵𝑥𝐶)))
32albii 1821 . . 3 (∀𝑥(𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ ∀𝑥(𝑥𝐴 → (𝑥𝐵𝑥𝐶)))
4 jcab 518 . . . 4 ((𝑥𝐴 → (𝑥𝐵𝑥𝐶)) ↔ ((𝑥𝐴𝑥𝐵) ∧ (𝑥𝐴𝑥𝐶)))
54albii 1821 . . 3 (∀𝑥(𝑥𝐴 → (𝑥𝐵𝑥𝐶)) ↔ ∀𝑥((𝑥𝐴𝑥𝐵) ∧ (𝑥𝐴𝑥𝐶)))
6 19.26 1873 . . 3 (∀𝑥((𝑥𝐴𝑥𝐵) ∧ (𝑥𝐴𝑥𝐶)) ↔ (∀𝑥(𝑥𝐴𝑥𝐵) ∧ ∀𝑥(𝑥𝐴𝑥𝐶)))
73, 5, 63bitrri 297 . 2 ((∀𝑥(𝑥𝐴𝑥𝐵) ∧ ∀𝑥(𝑥𝐴𝑥𝐶)) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐵𝐶)))
8 dfss2 3968 . . 3 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
9 dfss2 3968 . . 3 (𝐴𝐶 ↔ ∀𝑥(𝑥𝐴𝑥𝐶))
108, 9anbi12i 627 . 2 ((𝐴𝐵𝐴𝐶) ↔ (∀𝑥(𝑥𝐴𝑥𝐵) ∧ ∀𝑥(𝑥𝐴𝑥𝐶)))
11 dfss2 3968 . 2 (𝐴 ⊆ (𝐵𝐶) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐵𝐶)))
127, 10, 113bitr4i 302 1 ((𝐴𝐵𝐴𝐶) ↔ 𝐴 ⊆ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1539  wcel 2106  cin 3947  wss 3948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-in 3955  df-ss 3965
This theorem is referenced by:  ssini  4231  ssind  4232  uneqin  4278  disjpss  4460  trin  5277  pwin  5570  fin  6771  frrlem4  8276  frrlem13  8285  wfrlem4OLD  8314  epfrs  9728  tcmin  9738  resscntz  19199  subgdmdprd  19906  tgval  22465  eltg3i  22471  innei  22636  cnprest2  22801  subislly  22992  lly1stc  23007  xkohaus  23164  xkoinjcn  23198  opnfbas  23353  supfil  23406  rnelfm  23464  tsmsres  23655  restmetu  24086  chabs2  30808  cmbr4i  30892  pjin3i  31485  mdbr2  31587  dmdbr2  31594  dmdbr5  31599  mdslle1i  31608  mdslle2i  31609  mdslj1i  31610  mdslj2i  31611  mdsl2i  31613  mdslmd1lem1  31616  mdslmd1lem2  31617  mdslmd1i  31620  mdslmd3i  31623  hatomistici  31653  chrelat2i  31656  cvexchlem  31659  mdsymlem1  31694  mdsymlem3  31696  mdsymlem6  31699  dmdbr5ati  31713  pnfneige0  33000  ballotlem2  33556  iccllysconn  34310  heibor1lem  36769  relssinxpdmrn  37310  dochexmidlem1  40423  superficl  42406  k0004lem1  42986  ismnushort  43148
  Copyright terms: Public domain W3C validator