MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssin Structured version   Visualization version   GIF version

Theorem ssin 4131
Description: Subclass of intersection. Theorem 2.8(vii) of [Monk1] p. 26. (Contributed by NM, 15-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
ssin ((𝐴𝐵𝐴𝐶) ↔ 𝐴 ⊆ (𝐵𝐶))

Proof of Theorem ssin
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3869 . . . . 5 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
21imbi2i 339 . . . 4 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 → (𝑥𝐵𝑥𝐶)))
32albii 1826 . . 3 (∀𝑥(𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ ∀𝑥(𝑥𝐴 → (𝑥𝐵𝑥𝐶)))
4 jcab 521 . . . 4 ((𝑥𝐴 → (𝑥𝐵𝑥𝐶)) ↔ ((𝑥𝐴𝑥𝐵) ∧ (𝑥𝐴𝑥𝐶)))
54albii 1826 . . 3 (∀𝑥(𝑥𝐴 → (𝑥𝐵𝑥𝐶)) ↔ ∀𝑥((𝑥𝐴𝑥𝐵) ∧ (𝑥𝐴𝑥𝐶)))
6 19.26 1877 . . 3 (∀𝑥((𝑥𝐴𝑥𝐵) ∧ (𝑥𝐴𝑥𝐶)) ↔ (∀𝑥(𝑥𝐴𝑥𝐵) ∧ ∀𝑥(𝑥𝐴𝑥𝐶)))
73, 5, 63bitrri 301 . 2 ((∀𝑥(𝑥𝐴𝑥𝐵) ∧ ∀𝑥(𝑥𝐴𝑥𝐶)) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐵𝐶)))
8 dfss2 3873 . . 3 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
9 dfss2 3873 . . 3 (𝐴𝐶 ↔ ∀𝑥(𝑥𝐴𝑥𝐶))
108, 9anbi12i 630 . 2 ((𝐴𝐵𝐴𝐶) ↔ (∀𝑥(𝑥𝐴𝑥𝐵) ∧ ∀𝑥(𝑥𝐴𝑥𝐶)))
11 dfss2 3873 . 2 (𝐴 ⊆ (𝐵𝐶) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐵𝐶)))
127, 10, 113bitr4i 306 1 ((𝐴𝐵𝐴𝐶) ↔ 𝐴 ⊆ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1540  wcel 2114  cin 3852  wss 3853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-ext 2711
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1545  df-ex 1787  df-sb 2075  df-clab 2718  df-cleq 2731  df-clel 2812  df-v 3402  df-in 3860  df-ss 3870
This theorem is referenced by:  ssini  4132  ssind  4133  uneqin  4179  disjpss  4360  trin  5156  pwin  5433  fin  6569  wfrlem4  8000  epfrs  9259  tcmin  9269  resscntz  18593  subgdmdprd  19288  tgval  21719  eltg3i  21725  innei  21889  cnprest2  22054  subislly  22245  lly1stc  22260  xkohaus  22417  xkoinjcn  22451  opnfbas  22606  supfil  22659  rnelfm  22717  tsmsres  22908  restmetu  23336  chabs2  29465  cmbr4i  29549  pjin3i  30142  mdbr2  30244  dmdbr2  30251  dmdbr5  30256  mdslle1i  30265  mdslle2i  30266  mdslj1i  30267  mdslj2i  30268  mdsl2i  30270  mdslmd1lem1  30273  mdslmd1lem2  30274  mdslmd1i  30277  mdslmd3i  30280  hatomistici  30310  chrelat2i  30313  cvexchlem  30316  mdsymlem1  30351  mdsymlem3  30353  mdsymlem6  30356  dmdbr5ati  30370  pnfneige0  31486  ballotlem2  32038  iccllysconn  32796  frrlem4  33459  frrlem13  33468  heibor1lem  35623  dochexmidlem1  39130  superficl  40760  k0004lem1  41344
  Copyright terms: Public domain W3C validator