MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssin Structured version   Visualization version   GIF version

Theorem ssin 4202
Description: Subclass of intersection. Theorem 2.8(vii) of [Monk1] p. 26. (Contributed by NM, 15-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
ssin ((𝐴𝐵𝐴𝐶) ↔ 𝐴 ⊆ (𝐵𝐶))

Proof of Theorem ssin
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3930 . . . . 5 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
21imbi2i 336 . . . 4 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 → (𝑥𝐵𝑥𝐶)))
32albii 1819 . . 3 (∀𝑥(𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ ∀𝑥(𝑥𝐴 → (𝑥𝐵𝑥𝐶)))
4 jcab 517 . . . 4 ((𝑥𝐴 → (𝑥𝐵𝑥𝐶)) ↔ ((𝑥𝐴𝑥𝐵) ∧ (𝑥𝐴𝑥𝐶)))
54albii 1819 . . 3 (∀𝑥(𝑥𝐴 → (𝑥𝐵𝑥𝐶)) ↔ ∀𝑥((𝑥𝐴𝑥𝐵) ∧ (𝑥𝐴𝑥𝐶)))
6 19.26 1870 . . 3 (∀𝑥((𝑥𝐴𝑥𝐵) ∧ (𝑥𝐴𝑥𝐶)) ↔ (∀𝑥(𝑥𝐴𝑥𝐵) ∧ ∀𝑥(𝑥𝐴𝑥𝐶)))
73, 5, 63bitrri 298 . 2 ((∀𝑥(𝑥𝐴𝑥𝐵) ∧ ∀𝑥(𝑥𝐴𝑥𝐶)) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐵𝐶)))
8 df-ss 3931 . . 3 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
9 df-ss 3931 . . 3 (𝐴𝐶 ↔ ∀𝑥(𝑥𝐴𝑥𝐶))
108, 9anbi12i 628 . 2 ((𝐴𝐵𝐴𝐶) ↔ (∀𝑥(𝑥𝐴𝑥𝐵) ∧ ∀𝑥(𝑥𝐴𝑥𝐶)))
11 df-ss 3931 . 2 (𝐴 ⊆ (𝐵𝐶) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐵𝐶)))
127, 10, 113bitr4i 303 1 ((𝐴𝐵𝐴𝐶) ↔ 𝐴 ⊆ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538  wcel 2109  cin 3913  wss 3914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-in 3921  df-ss 3931
This theorem is referenced by:  ssini  4203  ssind  4204  uneqin  4252  disjpss  4424  trin  5226  pwin  5529  fin  6740  frrlem4  8268  frrlem13  8277  epfrs  9684  tcmin  9694  resscntz  19265  subgdmdprd  19966  tgval  22842  eltg3i  22848  innei  23012  cnprest2  23177  subislly  23368  lly1stc  23383  xkohaus  23540  xkoinjcn  23574  opnfbas  23729  supfil  23782  rnelfm  23840  tsmsres  24031  restmetu  24458  chabs2  31446  cmbr4i  31530  pjin3i  32123  mdbr2  32225  dmdbr2  32232  dmdbr5  32237  mdslle1i  32246  mdslle2i  32247  mdslj1i  32248  mdslj2i  32249  mdsl2i  32251  mdslmd1lem1  32254  mdslmd1lem2  32255  mdslmd1i  32258  mdslmd3i  32261  hatomistici  32291  chrelat2i  32294  cvexchlem  32297  mdsymlem1  32332  mdsymlem3  32334  mdsymlem6  32337  dmdbr5ati  32351  pnfneige0  33941  ballotlem2  34480  iccllysconn  35237  heibor1lem  37803  relssinxpdmrn  38331  dochexmidlem1  41454  superficl  43556  k0004lem1  44136  ismnushort  44290
  Copyright terms: Public domain W3C validator