| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssin | Structured version Visualization version GIF version | ||
| Description: Subclass of intersection. Theorem 2.8(vii) of [Monk1] p. 26. (Contributed by NM, 15-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| ssin | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) ↔ 𝐴 ⊆ (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3918 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) | |
| 2 | 1 | imbi2i 336 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐵 ∩ 𝐶)) ↔ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) |
| 3 | 2 | albii 1820 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐵 ∩ 𝐶)) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) |
| 4 | jcab 517 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) ↔ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) | |
| 5 | 4 | albii 1820 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) ↔ ∀𝑥((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) |
| 6 | 19.26 1871 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) | |
| 7 | 3, 5, 6 | 3bitrri 298 | . 2 ⊢ ((∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐵 ∩ 𝐶))) |
| 8 | df-ss 3919 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 9 | df-ss 3919 | . . 3 ⊢ (𝐴 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) | |
| 10 | 8, 9 | anbi12i 628 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) |
| 11 | df-ss 3919 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∩ 𝐶) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐵 ∩ 𝐶))) | |
| 12 | 7, 10, 11 | 3bitr4i 303 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) ↔ 𝐴 ⊆ (𝐵 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 ∈ wcel 2111 ∩ cin 3901 ⊆ wss 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-in 3909 df-ss 3919 |
| This theorem is referenced by: ssini 4190 ssind 4191 uneqin 4239 disjpss 4411 trin 5209 pwin 5507 fin 6703 frrlem4 8219 frrlem13 8228 epfrs 9621 tcmin 9629 resscntz 19246 subgdmdprd 19949 tgval 22871 eltg3i 22877 innei 23041 cnprest2 23206 subislly 23397 lly1stc 23412 xkohaus 23569 xkoinjcn 23603 opnfbas 23758 supfil 23811 rnelfm 23869 tsmsres 24060 restmetu 24486 chabs2 31495 cmbr4i 31579 pjin3i 32172 mdbr2 32274 dmdbr2 32281 dmdbr5 32286 mdslle1i 32295 mdslle2i 32296 mdslj1i 32297 mdslj2i 32298 mdsl2i 32300 mdslmd1lem1 32303 mdslmd1lem2 32304 mdslmd1i 32307 mdslmd3i 32310 hatomistici 32340 chrelat2i 32343 cvexchlem 32346 mdsymlem1 32381 mdsymlem3 32383 mdsymlem6 32386 dmdbr5ati 32400 pnfneige0 33962 ballotlem2 34500 iccllysconn 35292 heibor1lem 37855 relssinxpdmrn 38383 dochexmidlem1 41505 superficl 43606 k0004lem1 44186 ismnushort 44340 |
| Copyright terms: Public domain | W3C validator |