![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssin | Structured version Visualization version GIF version |
Description: Subclass of intersection. Theorem 2.8(vii) of [Monk1] p. 26. (Contributed by NM, 15-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
ssin | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) ↔ 𝐴 ⊆ (𝐵 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3965 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 ∩ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) | |
2 | 1 | imbi2i 336 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐵 ∩ 𝐶)) ↔ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) |
3 | 2 | albii 1822 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐵 ∩ 𝐶)) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶))) |
4 | jcab 519 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) ↔ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) | |
5 | 4 | albii 1822 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) ↔ ∀𝑥((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) |
6 | 19.26 1874 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) | |
7 | 3, 5, 6 | 3bitrri 298 | . 2 ⊢ ((∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐵 ∩ 𝐶))) |
8 | dfss2 3969 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
9 | dfss2 3969 | . . 3 ⊢ (𝐴 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) | |
10 | 8, 9 | anbi12i 628 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶))) |
11 | dfss2 3969 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∩ 𝐶) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐵 ∩ 𝐶))) | |
12 | 7, 10, 11 | 3bitr4i 303 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) ↔ 𝐴 ⊆ (𝐵 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∀wal 1540 ∈ wcel 2107 ∩ cin 3948 ⊆ wss 3949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-in 3956 df-ss 3966 |
This theorem is referenced by: ssini 4232 ssind 4233 uneqin 4279 disjpss 4461 trin 5278 pwin 5571 fin 6772 frrlem4 8274 frrlem13 8283 wfrlem4OLD 8312 epfrs 9726 tcmin 9736 resscntz 19197 subgdmdprd 19904 tgval 22458 eltg3i 22464 innei 22629 cnprest2 22794 subislly 22985 lly1stc 23000 xkohaus 23157 xkoinjcn 23191 opnfbas 23346 supfil 23399 rnelfm 23457 tsmsres 23648 restmetu 24079 chabs2 30770 cmbr4i 30854 pjin3i 31447 mdbr2 31549 dmdbr2 31556 dmdbr5 31561 mdslle1i 31570 mdslle2i 31571 mdslj1i 31572 mdslj2i 31573 mdsl2i 31575 mdslmd1lem1 31578 mdslmd1lem2 31579 mdslmd1i 31582 mdslmd3i 31585 hatomistici 31615 chrelat2i 31618 cvexchlem 31621 mdsymlem1 31656 mdsymlem3 31658 mdsymlem6 31661 dmdbr5ati 31675 pnfneige0 32931 ballotlem2 33487 iccllysconn 34241 heibor1lem 36677 relssinxpdmrn 37218 dochexmidlem1 40331 superficl 42318 k0004lem1 42898 ismnushort 43060 |
Copyright terms: Public domain | W3C validator |