MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brabv Structured version   Visualization version   GIF version

Theorem brabv 5504
Description: If two classes are in a relationship given by an ordered-pair class abstraction, the classes are sets. (Contributed by Alexander van der Vekens, 5-Nov-2017.)
Assertion
Ref Expression
brabv (𝑋{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V))

Proof of Theorem brabv
StepHypRef Expression
1 df-br 5090 . 2 (𝑋{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
2 opprc 4845 . . . 4 (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → ⟨𝑋, 𝑌⟩ = ∅)
3 0nelopab 5503 . . . . 5 ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}
4 eleq1 2819 . . . . 5 (⟨𝑋, 𝑌⟩ = ∅ → (⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}))
53, 4mtbiri 327 . . . 4 (⟨𝑋, 𝑌⟩ = ∅ → ¬ ⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
62, 5syl 17 . . 3 (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → ¬ ⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
76con4i 114 . 2 (⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (𝑋 ∈ V ∧ 𝑌 ∈ V))
81, 7sylbi 217 1 (𝑋{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  c0 4280  cop 4579   class class class wbr 5089  {copab 5151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152
This theorem is referenced by:  brfvopab  7403  bropopvvv  8020  bropfvvvvlem  8021  isfunc  17771  eqgval  19089  bj-imdirval3  37228  upwlkbprop  48237
  Copyright terms: Public domain W3C validator