| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brabv | Structured version Visualization version GIF version | ||
| Description: If two classes are in a relationship given by an ordered-pair class abstraction, the classes are sets. (Contributed by Alexander van der Vekens, 5-Nov-2017.) |
| Ref | Expression |
|---|---|
| brabv | ⊢ (𝑋{〈𝑥, 𝑦〉 ∣ 𝜑}𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5090 | . 2 ⊢ (𝑋{〈𝑥, 𝑦〉 ∣ 𝜑}𝑌 ↔ 〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
| 2 | opprc 4845 | . . . 4 ⊢ (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → 〈𝑋, 𝑌〉 = ∅) | |
| 3 | 0nelopab 5503 | . . . . 5 ⊢ ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 4 | eleq1 2819 | . . . . 5 ⊢ (〈𝑋, 𝑌〉 = ∅ → (〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑})) | |
| 5 | 3, 4 | mtbiri 327 | . . . 4 ⊢ (〈𝑋, 𝑌〉 = ∅ → ¬ 〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
| 6 | 2, 5 | syl 17 | . . 3 ⊢ (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → ¬ 〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
| 7 | 6 | con4i 114 | . 2 ⊢ (〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
| 8 | 1, 7 | sylbi 217 | 1 ⊢ (𝑋{〈𝑥, 𝑦〉 ∣ 𝜑}𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4280 〈cop 4579 class class class wbr 5089 {copab 5151 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 |
| This theorem is referenced by: brfvopab 7403 bropopvvv 8020 bropfvvvvlem 8021 isfunc 17771 eqgval 19089 bj-imdirval3 37228 upwlkbprop 48237 |
| Copyright terms: Public domain | W3C validator |