MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brabv Structured version   Visualization version   GIF version

Theorem brabv 5528
Description: If two classes are in a relationship given by an ordered-pair class abstraction, the classes are sets. (Contributed by Alexander van der Vekens, 5-Nov-2017.)
Assertion
Ref Expression
brabv (𝑋{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V))

Proof of Theorem brabv
StepHypRef Expression
1 df-br 5108 . 2 (𝑋{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
2 opprc 4860 . . . 4 (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → ⟨𝑋, 𝑌⟩ = ∅)
3 0nelopab 5527 . . . . 5 ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}
4 eleq1 2816 . . . . 5 (⟨𝑋, 𝑌⟩ = ∅ → (⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}))
53, 4mtbiri 327 . . . 4 (⟨𝑋, 𝑌⟩ = ∅ → ¬ ⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
62, 5syl 17 . . 3 (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → ¬ ⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
76con4i 114 . 2 (⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (𝑋 ∈ V ∧ 𝑌 ∈ V))
81, 7sylbi 217 1 (𝑋{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  c0 4296  cop 4595   class class class wbr 5107  {copab 5169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170
This theorem is referenced by:  brfvopab  7446  bropopvvv  8069  bropfvvvvlem  8070  isfunc  17826  eqgval  19109  bj-imdirval3  37172  upwlkbprop  48126
  Copyright terms: Public domain W3C validator