MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brabv Structured version   Visualization version   GIF version

Theorem brabv 5418
Description: If two classes are in a relationship given by an ordered-pair class abstraction, the classes are sets. (Contributed by Alexander van der Vekens, 5-Nov-2017.)
Assertion
Ref Expression
brabv (𝑋{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V))

Proof of Theorem brabv
StepHypRef Expression
1 df-br 5031 . 2 (𝑋{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
2 opprc 4788 . . . 4 (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → ⟨𝑋, 𝑌⟩ = ∅)
3 0nelopab 5417 . . . . 5 ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}
4 eleq1 2877 . . . . 5 (⟨𝑋, 𝑌⟩ = ∅ → (⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}))
53, 4mtbiri 330 . . . 4 (⟨𝑋, 𝑌⟩ = ∅ → ¬ ⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
62, 5syl 17 . . 3 (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → ¬ ⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
76con4i 114 . 2 (⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (𝑋 ∈ V ∧ 𝑌 ∈ V))
81, 7sylbi 220 1 (𝑋{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2111  Vcvv 3441  c0 4243  cop 4531   class class class wbr 5030  {copab 5092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-opab 5093
This theorem is referenced by:  brfvopab  7190  bropopvvv  7768  bropfvvvvlem  7769  isfunc  17126  eqgval  18321  bj-imdirval3  34599  upwlkbprop  44366
  Copyright terms: Public domain W3C validator