Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brabv | Structured version Visualization version GIF version |
Description: If two classes are in a relationship given by an ordered-pair class abstraction, the classes are sets. (Contributed by Alexander van der Vekens, 5-Nov-2017.) |
Ref | Expression |
---|---|
brabv | ⊢ (𝑋{〈𝑥, 𝑦〉 ∣ 𝜑}𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5071 | . 2 ⊢ (𝑋{〈𝑥, 𝑦〉 ∣ 𝜑}𝑌 ↔ 〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
2 | opprc 4824 | . . . 4 ⊢ (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → 〈𝑋, 𝑌〉 = ∅) | |
3 | 0nelopab 5471 | . . . . 5 ⊢ ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} | |
4 | eleq1 2826 | . . . . 5 ⊢ (〈𝑋, 𝑌〉 = ∅ → (〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑})) | |
5 | 3, 4 | mtbiri 326 | . . . 4 ⊢ (〈𝑋, 𝑌〉 = ∅ → ¬ 〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
6 | 2, 5 | syl 17 | . . 3 ⊢ (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → ¬ 〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
7 | 6 | con4i 114 | . 2 ⊢ (〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
8 | 1, 7 | sylbi 216 | 1 ⊢ (𝑋{〈𝑥, 𝑦〉 ∣ 𝜑}𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 〈cop 4564 class class class wbr 5070 {copab 5132 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 |
This theorem is referenced by: brfvopab 7310 bropopvvv 7901 bropfvvvvlem 7902 isfunc 17495 eqgval 18720 bj-imdirval3 35282 upwlkbprop 45188 |
Copyright terms: Public domain | W3C validator |