![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brabv | Structured version Visualization version GIF version |
Description: If two classes are in a relationship given by an ordered-pair class abstraction, the classes are sets. (Contributed by Alexander van der Vekens, 5-Nov-2017.) |
Ref | Expression |
---|---|
brabv | ⊢ (𝑋{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5107 | . 2 ⊢ (𝑋{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) | |
2 | opprc 4854 | . . . 4 ⊢ (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → ⟨𝑋, 𝑌⟩ = ∅) | |
3 | 0nelopab 5525 | . . . . 5 ⊢ ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} | |
4 | eleq1 2826 | . . . . 5 ⊢ (⟨𝑋, 𝑌⟩ = ∅ → (⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})) | |
5 | 3, 4 | mtbiri 327 | . . . 4 ⊢ (⟨𝑋, 𝑌⟩ = ∅ → ¬ ⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) |
6 | 2, 5 | syl 17 | . . 3 ⊢ (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → ¬ ⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) |
7 | 6 | con4i 114 | . 2 ⊢ (⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
8 | 1, 7 | sylbi 216 | 1 ⊢ (𝑋{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3446 ∅c0 4283 ⟨cop 4593 class class class wbr 5106 {copab 5168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2945 df-v 3448 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-br 5107 df-opab 5169 |
This theorem is referenced by: brfvopab 7415 bropopvvv 8023 bropfvvvvlem 8024 isfunc 17751 eqgval 18980 bj-imdirval3 35658 upwlkbprop 46047 |
Copyright terms: Public domain | W3C validator |