| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brabv | Structured version Visualization version GIF version | ||
| Description: If two classes are in a relationship given by an ordered-pair class abstraction, the classes are sets. (Contributed by Alexander van der Vekens, 5-Nov-2017.) |
| Ref | Expression |
|---|---|
| brabv | ⊢ (𝑋{〈𝑥, 𝑦〉 ∣ 𝜑}𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5111 | . 2 ⊢ (𝑋{〈𝑥, 𝑦〉 ∣ 𝜑}𝑌 ↔ 〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
| 2 | opprc 4863 | . . . 4 ⊢ (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → 〈𝑋, 𝑌〉 = ∅) | |
| 3 | 0nelopab 5530 | . . . . 5 ⊢ ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 4 | eleq1 2817 | . . . . 5 ⊢ (〈𝑋, 𝑌〉 = ∅ → (〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑})) | |
| 5 | 3, 4 | mtbiri 327 | . . . 4 ⊢ (〈𝑋, 𝑌〉 = ∅ → ¬ 〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
| 6 | 2, 5 | syl 17 | . . 3 ⊢ (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → ¬ 〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
| 7 | 6 | con4i 114 | . 2 ⊢ (〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
| 8 | 1, 7 | sylbi 217 | 1 ⊢ (𝑋{〈𝑥, 𝑦〉 ∣ 𝜑}𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∅c0 4299 〈cop 4598 class class class wbr 5110 {copab 5172 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 |
| This theorem is referenced by: brfvopab 7449 bropopvvv 8072 bropfvvvvlem 8073 isfunc 17833 eqgval 19116 bj-imdirval3 37179 upwlkbprop 48130 |
| Copyright terms: Public domain | W3C validator |