![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pnfnemnf | Structured version Visualization version GIF version |
Description: Plus and minus infinity are different elements of ℝ*. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
pnfnemnf | ⊢ +∞ ≠ -∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfxr 11344 | . . . 4 ⊢ +∞ ∈ ℝ* | |
2 | pwne 5371 | . . . 4 ⊢ (+∞ ∈ ℝ* → 𝒫 +∞ ≠ +∞) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ 𝒫 +∞ ≠ +∞ |
4 | 3 | necomi 3001 | . 2 ⊢ +∞ ≠ 𝒫 +∞ |
5 | df-mnf 11327 | . 2 ⊢ -∞ = 𝒫 +∞ | |
6 | 4, 5 | neeqtrri 3020 | 1 ⊢ +∞ ≠ -∞ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ≠ wne 2946 𝒫 cpw 4622 +∞cpnf 11321 -∞cmnf 11322 ℝ*cxr 11323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-pow 5383 ax-un 7770 ax-cnex 11240 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-rab 3444 df-v 3490 df-un 3981 df-in 3983 df-ss 3993 df-pw 4624 df-sn 4649 df-pr 4651 df-uni 4932 df-pnf 11326 df-mnf 11327 df-xr 11328 |
This theorem is referenced by: mnfnepnf 11346 xnn0nemnf 12636 xrnemnf 13180 xrltnr 13182 pnfnlt 13191 nltmnf 13192 xaddpnf1 13288 xaddnemnf 13298 xmullem2 13327 xadddilem 13356 hashnemnf 14393 xrge0iifhom 33883 esumpr2 34031 |
Copyright terms: Public domain | W3C validator |