| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pnfnemnf | Structured version Visualization version GIF version | ||
| Description: Plus and minus infinity are different elements of ℝ*. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| pnfnemnf | ⊢ +∞ ≠ -∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfxr 11169 | . . . 4 ⊢ +∞ ∈ ℝ* | |
| 2 | pwne 5292 | . . . 4 ⊢ (+∞ ∈ ℝ* → 𝒫 +∞ ≠ +∞) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ 𝒫 +∞ ≠ +∞ |
| 4 | 3 | necomi 2979 | . 2 ⊢ +∞ ≠ 𝒫 +∞ |
| 5 | df-mnf 11152 | . 2 ⊢ -∞ = 𝒫 +∞ | |
| 6 | 4, 5 | neeqtrri 2998 | 1 ⊢ +∞ ≠ -∞ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ≠ wne 2925 𝒫 cpw 4551 +∞cpnf 11146 -∞cmnf 11147 ℝ*cxr 11148 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-pow 5304 ax-un 7671 ax-cnex 11065 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3395 df-v 3438 df-un 3908 df-in 3910 df-ss 3920 df-pw 4553 df-sn 4578 df-pr 4580 df-uni 4859 df-pnf 11151 df-mnf 11152 df-xr 11153 |
| This theorem is referenced by: mnfnepnf 11171 xnn0nemnf 12468 xrnemnf 13019 xrltnr 13021 pnfnlt 13030 nltmnf 13031 xaddpnf1 13128 xaddnemnf 13138 xmullem2 13167 xadddilem 13196 hashnemnf 14251 xrge0iifhom 33910 esumpr2 34040 |
| Copyright terms: Public domain | W3C validator |