MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnfnemnf Structured version   Visualization version   GIF version

Theorem pnfnemnf 11030
Description: Plus and minus infinity are different elements of *. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
pnfnemnf +∞ ≠ -∞

Proof of Theorem pnfnemnf
StepHypRef Expression
1 pnfxr 11029 . . . 4 +∞ ∈ ℝ*
2 pwne 5273 . . . 4 (+∞ ∈ ℝ* → 𝒫 +∞ ≠ +∞)
31, 2ax-mp 5 . . 3 𝒫 +∞ ≠ +∞
43necomi 2998 . 2 +∞ ≠ 𝒫 +∞
5 df-mnf 11012 . 2 -∞ = 𝒫 +∞
64, 5neeqtrri 3017 1 +∞ ≠ -∞
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  wne 2943  𝒫 cpw 4533  +∞cpnf 11006  -∞cmnf 11007  *cxr 11008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-pow 5288  ax-un 7588  ax-cnex 10927
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-rab 3073  df-v 3434  df-un 3892  df-in 3894  df-ss 3904  df-pw 4535  df-sn 4562  df-pr 4564  df-uni 4840  df-pnf 11011  df-mnf 11012  df-xr 11013
This theorem is referenced by:  mnfnepnf  11031  xnn0nemnf  12316  xrnemnf  12853  xrltnr  12855  pnfnlt  12864  nltmnf  12865  xaddpnf1  12960  xaddnemnf  12970  xmullem2  12999  xadddilem  13028  hashnemnf  14058  xrge0iifhom  31887  esumpr2  32035
  Copyright terms: Public domain W3C validator