| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pnfnemnf | Structured version Visualization version GIF version | ||
| Description: Plus and minus infinity are different elements of ℝ*. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| pnfnemnf | ⊢ +∞ ≠ -∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfxr 11166 | . . . 4 ⊢ +∞ ∈ ℝ* | |
| 2 | pwne 5289 | . . . 4 ⊢ (+∞ ∈ ℝ* → 𝒫 +∞ ≠ +∞) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ 𝒫 +∞ ≠ +∞ |
| 4 | 3 | necomi 2982 | . 2 ⊢ +∞ ≠ 𝒫 +∞ |
| 5 | df-mnf 11149 | . 2 ⊢ -∞ = 𝒫 +∞ | |
| 6 | 4, 5 | neeqtrri 3001 | 1 ⊢ +∞ ≠ -∞ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ≠ wne 2928 𝒫 cpw 4547 +∞cpnf 11143 -∞cmnf 11144 ℝ*cxr 11145 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-pow 5301 ax-un 7668 ax-cnex 11062 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-un 3902 df-in 3904 df-ss 3914 df-pw 4549 df-sn 4574 df-pr 4576 df-uni 4857 df-pnf 11148 df-mnf 11149 df-xr 11150 |
| This theorem is referenced by: mnfnepnf 11168 xnn0nemnf 12465 xrnemnf 13016 xrltnr 13018 pnfnlt 13027 nltmnf 13028 xaddpnf1 13125 xaddnemnf 13135 xmullem2 13164 xadddilem 13193 hashnemnf 14251 xrge0iifhom 33950 esumpr2 34080 |
| Copyright terms: Public domain | W3C validator |