Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pnfnemnf | Structured version Visualization version GIF version |
Description: Plus and minus infinity are different elements of ℝ*. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
pnfnemnf | ⊢ +∞ ≠ -∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfxr 10960 | . . . 4 ⊢ +∞ ∈ ℝ* | |
2 | pwne 5268 | . . . 4 ⊢ (+∞ ∈ ℝ* → 𝒫 +∞ ≠ +∞) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ 𝒫 +∞ ≠ +∞ |
4 | 3 | necomi 2997 | . 2 ⊢ +∞ ≠ 𝒫 +∞ |
5 | df-mnf 10943 | . 2 ⊢ -∞ = 𝒫 +∞ | |
6 | 4, 5 | neeqtrri 3016 | 1 ⊢ +∞ ≠ -∞ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ≠ wne 2942 𝒫 cpw 4530 +∞cpnf 10937 -∞cmnf 10938 ℝ*cxr 10939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-pow 5283 ax-un 7566 ax-cnex 10858 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-rab 3072 df-v 3424 df-un 3888 df-in 3890 df-ss 3900 df-pw 4532 df-sn 4559 df-pr 4561 df-uni 4837 df-pnf 10942 df-mnf 10943 df-xr 10944 |
This theorem is referenced by: mnfnepnf 10962 xnn0nemnf 12246 xrnemnf 12782 xrltnr 12784 pnfnlt 12793 nltmnf 12794 xaddpnf1 12889 xaddnemnf 12899 xmullem2 12928 xadddilem 12957 hashnemnf 13986 xrge0iifhom 31789 esumpr2 31935 |
Copyright terms: Public domain | W3C validator |