Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pnfnemnf | Structured version Visualization version GIF version |
Description: Plus and minus infinity are different elements of ℝ*. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
pnfnemnf | ⊢ +∞ ≠ -∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfxr 11029 | . . . 4 ⊢ +∞ ∈ ℝ* | |
2 | pwne 5273 | . . . 4 ⊢ (+∞ ∈ ℝ* → 𝒫 +∞ ≠ +∞) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ 𝒫 +∞ ≠ +∞ |
4 | 3 | necomi 2998 | . 2 ⊢ +∞ ≠ 𝒫 +∞ |
5 | df-mnf 11012 | . 2 ⊢ -∞ = 𝒫 +∞ | |
6 | 4, 5 | neeqtrri 3017 | 1 ⊢ +∞ ≠ -∞ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ≠ wne 2943 𝒫 cpw 4533 +∞cpnf 11006 -∞cmnf 11007 ℝ*cxr 11008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-pow 5288 ax-un 7588 ax-cnex 10927 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-rab 3073 df-v 3434 df-un 3892 df-in 3894 df-ss 3904 df-pw 4535 df-sn 4562 df-pr 4564 df-uni 4840 df-pnf 11011 df-mnf 11012 df-xr 11013 |
This theorem is referenced by: mnfnepnf 11031 xnn0nemnf 12316 xrnemnf 12853 xrltnr 12855 pnfnlt 12864 nltmnf 12865 xaddpnf1 12960 xaddnemnf 12970 xmullem2 12999 xadddilem 13028 hashnemnf 14058 xrge0iifhom 31887 esumpr2 32035 |
Copyright terms: Public domain | W3C validator |