![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pnfnemnf | Structured version Visualization version GIF version |
Description: Plus and minus infinity are different elements of ℝ*. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
pnfnemnf | ⊢ +∞ ≠ -∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfxr 11313 | . . . 4 ⊢ +∞ ∈ ℝ* | |
2 | pwne 5359 | . . . 4 ⊢ (+∞ ∈ ℝ* → 𝒫 +∞ ≠ +∞) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ 𝒫 +∞ ≠ +∞ |
4 | 3 | necomi 2993 | . 2 ⊢ +∞ ≠ 𝒫 +∞ |
5 | df-mnf 11296 | . 2 ⊢ -∞ = 𝒫 +∞ | |
6 | 4, 5 | neeqtrri 3012 | 1 ⊢ +∞ ≠ -∞ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ≠ wne 2938 𝒫 cpw 4605 +∞cpnf 11290 -∞cmnf 11291 ℝ*cxr 11292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-pow 5371 ax-un 7754 ax-cnex 11209 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-rab 3434 df-v 3480 df-un 3968 df-in 3970 df-ss 3980 df-pw 4607 df-sn 4632 df-pr 4634 df-uni 4913 df-pnf 11295 df-mnf 11296 df-xr 11297 |
This theorem is referenced by: mnfnepnf 11315 xnn0nemnf 12608 xrnemnf 13157 xrltnr 13159 pnfnlt 13168 nltmnf 13169 xaddpnf1 13265 xaddnemnf 13275 xmullem2 13304 xadddilem 13333 hashnemnf 14380 xrge0iifhom 33898 esumpr2 34048 |
Copyright terms: Public domain | W3C validator |