MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwv Structured version   Visualization version   GIF version

Theorem pwv 4871
Description: The power class of the universe is the universe. Exercise 4.12(d) of [Mendelson] p. 235.

The collection of all classes is of course larger than V, which is the collection of all sets. But 𝒫 V, being a class, cannot contain proper classes, so 𝒫 V is actually no larger than V. This fact is exploited in ncanth 7345. (Contributed by NM, 14-Sep-2003.)

Assertion
Ref Expression
pwv 𝒫 V = V

Proof of Theorem pwv
StepHypRef Expression
1 ssv 3974 . . . 4 𝑥 ⊆ V
2 velpw 4571 . . . 4 (𝑥 ∈ 𝒫 V ↔ 𝑥 ⊆ V)
31, 2mpbir 231 . . 3 𝑥 ∈ 𝒫 V
4 vex 3454 . . 3 𝑥 ∈ V
53, 42th 264 . 2 (𝑥 ∈ 𝒫 V ↔ 𝑥 ∈ V)
65eqriv 2727 1 𝒫 V = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3450  wss 3917  𝒫 cpw 4566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-ss 3934  df-pw 4568
This theorem is referenced by:  univ  5414  ncanth  7345
  Copyright terms: Public domain W3C validator