MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwv Structured version   Visualization version   GIF version

Theorem pwv 4856
Description: The power class of the universe is the universe. Exercise 4.12(d) of [Mendelson] p. 235.

The collection of all classes is of course larger than V, which is the collection of all sets. But 𝒫 V, being a class, cannot contain proper classes, so 𝒫 V is actually no larger than V. This fact is exploited in ncanth 7301. (Contributed by NM, 14-Sep-2003.)

Assertion
Ref Expression
pwv 𝒫 V = V

Proof of Theorem pwv
StepHypRef Expression
1 ssv 3959 . . . 4 𝑥 ⊆ V
2 velpw 4555 . . . 4 (𝑥 ∈ 𝒫 V ↔ 𝑥 ⊆ V)
31, 2mpbir 231 . . 3 𝑥 ∈ 𝒫 V
4 vex 3440 . . 3 𝑥 ∈ V
53, 42th 264 . 2 (𝑥 ∈ 𝒫 V ↔ 𝑥 ∈ V)
65eqriv 2728 1 𝒫 V = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  Vcvv 3436  wss 3902  𝒫 cpw 4550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-ss 3919  df-pw 4552
This theorem is referenced by:  univ  5392  ncanth  7301
  Copyright terms: Public domain W3C validator