MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpwuni Structured version   Visualization version   GIF version

Theorem elpwuni 5055
Description: Relationship for power class and union. (Contributed by NM, 18-Jul-2006.)
Assertion
Ref Expression
elpwuni (𝐵𝐴 → (𝐴 ⊆ 𝒫 𝐵 𝐴 = 𝐵))

Proof of Theorem elpwuni
StepHypRef Expression
1 sspwuni 5050 . 2 (𝐴 ⊆ 𝒫 𝐵 𝐴𝐵)
2 unissel 4890 . . . 4 (( 𝐴𝐵𝐵𝐴) → 𝐴 = 𝐵)
32expcom 413 . . 3 (𝐵𝐴 → ( 𝐴𝐵 𝐴 = 𝐵))
4 eqimss 3989 . . 3 ( 𝐴 = 𝐵 𝐴𝐵)
53, 4impbid1 225 . 2 (𝐵𝐴 → ( 𝐴𝐵 𝐴 = 𝐵))
61, 5bitrid 283 1 (𝐵𝐴 → (𝐴 ⊆ 𝒫 𝐵 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2113  wss 3898  𝒫 cpw 4549   cuni 4858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-v 3439  df-ss 3915  df-pw 4551  df-uni 4859
This theorem is referenced by:  mreuni  17504  ustuni  24142  utopbas  24151  issgon  34157  br2base  34303
  Copyright terms: Public domain W3C validator