MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpwuni Structured version   Visualization version   GIF version

Theorem elpwuni 5107
Description: Relationship for power class and union. (Contributed by NM, 18-Jul-2006.)
Assertion
Ref Expression
elpwuni (𝐵𝐴 → (𝐴 ⊆ 𝒫 𝐵 𝐴 = 𝐵))

Proof of Theorem elpwuni
StepHypRef Expression
1 sspwuni 5102 . 2 (𝐴 ⊆ 𝒫 𝐵 𝐴𝐵)
2 unissel 4941 . . . 4 (( 𝐴𝐵𝐵𝐴) → 𝐴 = 𝐵)
32expcom 412 . . 3 (𝐵𝐴 → ( 𝐴𝐵 𝐴 = 𝐵))
4 eqimss 4039 . . 3 ( 𝐴 = 𝐵 𝐴𝐵)
53, 4impbid1 224 . 2 (𝐵𝐴 → ( 𝐴𝐵 𝐴 = 𝐵))
61, 5bitrid 282 1 (𝐵𝐴 → (𝐴 ⊆ 𝒫 𝐵 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2104  wss 3947  𝒫 cpw 4601   cuni 4907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-v 3474  df-in 3954  df-ss 3964  df-pw 4603  df-uni 4908
This theorem is referenced by:  mreuni  17548  ustuni  23951  utopbas  23960  issgon  33419  br2base  33566
  Copyright terms: Public domain W3C validator