MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwun Structured version   Visualization version   GIF version

Theorem pwun 5572
Description: The power class of the union of two classes equals the union of their power classes, iff one class is a subclass of the other. Part of Exercise 7(b) of [Enderton] p. 28. (Contributed by NM, 23-Nov-2003.)
Assertion
Ref Expression
pwun ((𝐴𝐵𝐵𝐴) ↔ 𝒫 (𝐴𝐵) = (𝒫 𝐴 ∪ 𝒫 𝐵))

Proof of Theorem pwun
StepHypRef Expression
1 pwunss 4620 . . 3 (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴𝐵)
21biantru 530 . 2 (𝒫 (𝐴𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵) ↔ (𝒫 (𝐴𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵) ∧ (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴𝐵)))
3 pwssun 5571 . 2 ((𝐴𝐵𝐵𝐴) ↔ 𝒫 (𝐴𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵))
4 eqss 3997 . 2 (𝒫 (𝐴𝐵) = (𝒫 𝐴 ∪ 𝒫 𝐵) ↔ (𝒫 (𝐴𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵) ∧ (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴𝐵)))
52, 3, 43bitr4i 302 1 ((𝐴𝐵𝐵𝐴) ↔ 𝒫 (𝐴𝐵) = (𝒫 𝐴 ∪ 𝒫 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wo 845   = wceq 1541  cun 3946  wss 3948  𝒫 cpw 4602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-un 3953  df-in 3955  df-ss 3965  df-pw 4604  df-sn 4629  df-pr 4631
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator