![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwun | Structured version Visualization version GIF version |
Description: The power class of the union of two classes equals the union of their power classes, iff one class is a subclass of the other. Part of Exercise 7(b) of [Enderton] p. 28. (Contributed by NM, 23-Nov-2003.) |
Ref | Expression |
---|---|
pwun | ⊢ ((𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴) ↔ 𝒫 (𝐴 ∪ 𝐵) = (𝒫 𝐴 ∪ 𝒫 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwunss 4640 | . . 3 ⊢ (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴 ∪ 𝐵) | |
2 | 1 | biantru 529 | . 2 ⊢ (𝒫 (𝐴 ∪ 𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵) ↔ (𝒫 (𝐴 ∪ 𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵) ∧ (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴 ∪ 𝐵))) |
3 | pwssun 5590 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴) ↔ 𝒫 (𝐴 ∪ 𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵)) | |
4 | eqss 4024 | . 2 ⊢ (𝒫 (𝐴 ∪ 𝐵) = (𝒫 𝐴 ∪ 𝒫 𝐵) ↔ (𝒫 (𝐴 ∪ 𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵) ∧ (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴 ∪ 𝐵))) | |
5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴) ↔ 𝒫 (𝐴 ∪ 𝐵) = (𝒫 𝐴 ∪ 𝒫 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 846 = wceq 1537 ∪ cun 3974 ⊆ wss 3976 𝒫 cpw 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-ss 3993 df-pw 4624 df-sn 4649 df-pr 4651 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |