MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwunss Structured version   Visualization version   GIF version

Theorem pwunss 4581
Description: The power class of the union of two classes includes the union of their power classes. Exercise 4.12(k) of [Mendelson] p. 235. (Contributed by NM, 23-Nov-2003.) Remove use of ax-sep 5251, ax-nul 5261, ax-pr 5387 and shorten proof. (Revised by BJ, 13-Apr-2024.)
Assertion
Ref Expression
pwunss (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴𝐵)

Proof of Theorem pwunss
StepHypRef Expression
1 ssun1 4141 . . 3 𝐴 ⊆ (𝐴𝐵)
21sspwi 4575 . 2 𝒫 𝐴 ⊆ 𝒫 (𝐴𝐵)
3 ssun2 4142 . . 3 𝐵 ⊆ (𝐴𝐵)
43sspwi 4575 . 2 𝒫 𝐵 ⊆ 𝒫 (𝐴𝐵)
52, 4unssi 4154 1 (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  cun 3912  wss 3914  𝒫 cpw 4563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-un 3919  df-ss 3931  df-pw 4565
This theorem is referenced by:  pwun  5531
  Copyright terms: Public domain W3C validator