Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > qdass | Structured version Visualization version GIF version |
Description: Two ways to write an unordered quadruple. (Contributed by Mario Carneiro, 5-Jan-2016.) |
Ref | Expression |
---|---|
qdass | ⊢ ({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = ({𝐴, 𝐵, 𝐶} ∪ {𝐷}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unass 4096 | . 2 ⊢ (({𝐴, 𝐵} ∪ {𝐶}) ∪ {𝐷}) = ({𝐴, 𝐵} ∪ ({𝐶} ∪ {𝐷})) | |
2 | df-tp 4563 | . . 3 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
3 | 2 | uneq1i 4089 | . 2 ⊢ ({𝐴, 𝐵, 𝐶} ∪ {𝐷}) = (({𝐴, 𝐵} ∪ {𝐶}) ∪ {𝐷}) |
4 | df-pr 4561 | . . 3 ⊢ {𝐶, 𝐷} = ({𝐶} ∪ {𝐷}) | |
5 | 4 | uneq2i 4090 | . 2 ⊢ ({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = ({𝐴, 𝐵} ∪ ({𝐶} ∪ {𝐷})) |
6 | 1, 3, 5 | 3eqtr4ri 2777 | 1 ⊢ ({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = ({𝐴, 𝐵, 𝐶} ∪ {𝐷}) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cun 3881 {csn 4558 {cpr 4560 {ctp 4562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-pr 4561 df-tp 4563 |
This theorem is referenced by: cnlmodlem1 24205 cnlmodlem2 24206 cnlmodlem3 24207 cnlmod4 24208 cnstrcvs 24210 ex-pw 28694 |
Copyright terms: Public domain | W3C validator |