MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qdass Structured version   Visualization version   GIF version

Theorem qdass 4689
Description: Two ways to write an unordered quadruple. (Contributed by Mario Carneiro, 5-Jan-2016.)
Assertion
Ref Expression
qdass ({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = ({𝐴, 𝐵, 𝐶} ∪ {𝐷})

Proof of Theorem qdass
StepHypRef Expression
1 unass 4100 . 2 (({𝐴, 𝐵} ∪ {𝐶}) ∪ {𝐷}) = ({𝐴, 𝐵} ∪ ({𝐶} ∪ {𝐷}))
2 df-tp 4566 . . 3 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
32uneq1i 4093 . 2 ({𝐴, 𝐵, 𝐶} ∪ {𝐷}) = (({𝐴, 𝐵} ∪ {𝐶}) ∪ {𝐷})
4 df-pr 4564 . . 3 {𝐶, 𝐷} = ({𝐶} ∪ {𝐷})
54uneq2i 4094 . 2 ({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = ({𝐴, 𝐵} ∪ ({𝐶} ∪ {𝐷}))
61, 3, 53eqtr4ri 2777 1 ({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = ({𝐴, 𝐵, 𝐶} ∪ {𝐷})
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cun 3885  {csn 4561  {cpr 4563  {ctp 4565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-un 3892  df-pr 4564  df-tp 4566
This theorem is referenced by:  cnlmodlem1  24299  cnlmodlem2  24300  cnlmodlem3  24301  cnlmod4  24302  cnstrcvs  24304  ex-pw  28793
  Copyright terms: Public domain W3C validator