| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qdass | Structured version Visualization version GIF version | ||
| Description: Two ways to write an unordered quadruple. (Contributed by Mario Carneiro, 5-Jan-2016.) |
| Ref | Expression |
|---|---|
| qdass | ⊢ ({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = ({𝐴, 𝐵, 𝐶} ∪ {𝐷}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unass 4120 | . 2 ⊢ (({𝐴, 𝐵} ∪ {𝐶}) ∪ {𝐷}) = ({𝐴, 𝐵} ∪ ({𝐶} ∪ {𝐷})) | |
| 2 | df-tp 4579 | . . 3 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 3 | 2 | uneq1i 4112 | . 2 ⊢ ({𝐴, 𝐵, 𝐶} ∪ {𝐷}) = (({𝐴, 𝐵} ∪ {𝐶}) ∪ {𝐷}) |
| 4 | df-pr 4577 | . . 3 ⊢ {𝐶, 𝐷} = ({𝐶} ∪ {𝐷}) | |
| 5 | 4 | uneq2i 4113 | . 2 ⊢ ({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = ({𝐴, 𝐵} ∪ ({𝐶} ∪ {𝐷})) |
| 6 | 1, 3, 5 | 3eqtr4ri 2764 | 1 ⊢ ({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = ({𝐴, 𝐵, 𝐶} ∪ {𝐷}) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∪ cun 3898 {csn 4574 {cpr 4576 {ctp 4578 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3436 df-un 3905 df-pr 4577 df-tp 4579 |
| This theorem is referenced by: cnlmodlem1 25056 cnlmodlem2 25057 cnlmodlem3 25058 cnlmod4 25059 cnstrcvs 25061 ex-pw 30399 |
| Copyright terms: Public domain | W3C validator |