MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qdass Structured version   Visualization version   GIF version

Theorem qdass 4758
Description: Two ways to write an unordered quadruple. (Contributed by Mario Carneiro, 5-Jan-2016.)
Assertion
Ref Expression
qdass ({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = ({𝐴, 𝐵, 𝐶} ∪ {𝐷})

Proof of Theorem qdass
StepHypRef Expression
1 unass 4182 . 2 (({𝐴, 𝐵} ∪ {𝐶}) ∪ {𝐷}) = ({𝐴, 𝐵} ∪ ({𝐶} ∪ {𝐷}))
2 df-tp 4636 . . 3 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
32uneq1i 4174 . 2 ({𝐴, 𝐵, 𝐶} ∪ {𝐷}) = (({𝐴, 𝐵} ∪ {𝐶}) ∪ {𝐷})
4 df-pr 4634 . . 3 {𝐶, 𝐷} = ({𝐶} ∪ {𝐷})
54uneq2i 4175 . 2 ({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = ({𝐴, 𝐵} ∪ ({𝐶} ∪ {𝐷}))
61, 3, 53eqtr4ri 2774 1 ({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = ({𝐴, 𝐵, 𝐶} ∪ {𝐷})
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cun 3961  {csn 4631  {cpr 4633  {ctp 4635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-un 3968  df-pr 4634  df-tp 4636
This theorem is referenced by:  cnlmodlem1  25183  cnlmodlem2  25184  cnlmodlem3  25185  cnlmod4  25186  cnstrcvs  25188  ex-pw  30458
  Copyright terms: Public domain W3C validator