MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qdassr Structured version   Visualization version   GIF version

Theorem qdassr 4704
Description: Two ways to write an unordered quadruple. (Contributed by Mario Carneiro, 5-Jan-2016.)
Assertion
Ref Expression
qdassr ({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = ({𝐴} ∪ {𝐵, 𝐶, 𝐷})

Proof of Theorem qdassr
StepHypRef Expression
1 unass 4119 . 2 (({𝐴} ∪ {𝐵}) ∪ {𝐶, 𝐷}) = ({𝐴} ∪ ({𝐵} ∪ {𝐶, 𝐷}))
2 df-pr 4576 . . 3 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
32uneq1i 4111 . 2 ({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = (({𝐴} ∪ {𝐵}) ∪ {𝐶, 𝐷})
4 tpass 4702 . . 3 {𝐵, 𝐶, 𝐷} = ({𝐵} ∪ {𝐶, 𝐷})
54uneq2i 4112 . 2 ({𝐴} ∪ {𝐵, 𝐶, 𝐷}) = ({𝐴} ∪ ({𝐵} ∪ {𝐶, 𝐷}))
61, 3, 53eqtr4i 2764 1 ({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = ({𝐴} ∪ {𝐵, 𝐶, 𝐷})
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cun 3895  {csn 4573  {cpr 4575  {ctp 4577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-un 3902  df-sn 4574  df-pr 4576  df-tp 4578
This theorem is referenced by:  en4  9166  ex-pw  30409
  Copyright terms: Public domain W3C validator