| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qdassr | Structured version Visualization version GIF version | ||
| Description: Two ways to write an unordered quadruple. (Contributed by Mario Carneiro, 5-Jan-2016.) |
| Ref | Expression |
|---|---|
| qdassr | ⊢ ({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = ({𝐴} ∪ {𝐵, 𝐶, 𝐷}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unass 4119 | . 2 ⊢ (({𝐴} ∪ {𝐵}) ∪ {𝐶, 𝐷}) = ({𝐴} ∪ ({𝐵} ∪ {𝐶, 𝐷})) | |
| 2 | df-pr 4576 | . . 3 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 3 | 2 | uneq1i 4111 | . 2 ⊢ ({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = (({𝐴} ∪ {𝐵}) ∪ {𝐶, 𝐷}) |
| 4 | tpass 4702 | . . 3 ⊢ {𝐵, 𝐶, 𝐷} = ({𝐵} ∪ {𝐶, 𝐷}) | |
| 5 | 4 | uneq2i 4112 | . 2 ⊢ ({𝐴} ∪ {𝐵, 𝐶, 𝐷}) = ({𝐴} ∪ ({𝐵} ∪ {𝐶, 𝐷})) |
| 6 | 1, 3, 5 | 3eqtr4i 2764 | 1 ⊢ ({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = ({𝐴} ∪ {𝐵, 𝐶, 𝐷}) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∪ cun 3895 {csn 4573 {cpr 4575 {ctp 4577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 df-sn 4574 df-pr 4576 df-tp 4578 |
| This theorem is referenced by: en4 9166 ex-pw 30409 |
| Copyright terms: Public domain | W3C validator |