MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qdassr Structured version   Visualization version   GIF version

Theorem qdassr 4735
Description: Two ways to write an unordered quadruple. (Contributed by Mario Carneiro, 5-Jan-2016.)
Assertion
Ref Expression
qdassr ({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = ({𝐴} ∪ {𝐵, 𝐶, 𝐷})

Proof of Theorem qdassr
StepHypRef Expression
1 unass 4152 . 2 (({𝐴} ∪ {𝐵}) ∪ {𝐶, 𝐷}) = ({𝐴} ∪ ({𝐵} ∪ {𝐶, 𝐷}))
2 df-pr 4609 . . 3 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
32uneq1i 4144 . 2 ({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = (({𝐴} ∪ {𝐵}) ∪ {𝐶, 𝐷})
4 tpass 4733 . . 3 {𝐵, 𝐶, 𝐷} = ({𝐵} ∪ {𝐶, 𝐷})
54uneq2i 4145 . 2 ({𝐴} ∪ {𝐵, 𝐶, 𝐷}) = ({𝐴} ∪ ({𝐵} ∪ {𝐶, 𝐷}))
61, 3, 53eqtr4i 2769 1 ({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = ({𝐴} ∪ {𝐵, 𝐶, 𝐷})
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cun 3929  {csn 4606  {cpr 4608  {ctp 4610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-un 3936  df-sn 4607  df-pr 4609  df-tp 4611
This theorem is referenced by:  en4  9294  ex-pw  30415
  Copyright terms: Public domain W3C validator