![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qdassr | Structured version Visualization version GIF version |
Description: Two ways to write an unordered quadruple. (Contributed by Mario Carneiro, 5-Jan-2016.) |
Ref | Expression |
---|---|
qdassr | ⊢ ({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = ({𝐴} ∪ {𝐵, 𝐶, 𝐷}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unass 4069 | . 2 ⊢ (({𝐴} ∪ {𝐵}) ∪ {𝐶, 𝐷}) = ({𝐴} ∪ ({𝐵} ∪ {𝐶, 𝐷})) | |
2 | df-pr 4481 | . . 3 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
3 | 2 | uneq1i 4062 | . 2 ⊢ ({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = (({𝐴} ∪ {𝐵}) ∪ {𝐶, 𝐷}) |
4 | tpass 4601 | . . 3 ⊢ {𝐵, 𝐶, 𝐷} = ({𝐵} ∪ {𝐶, 𝐷}) | |
5 | 4 | uneq2i 4063 | . 2 ⊢ ({𝐴} ∪ {𝐵, 𝐶, 𝐷}) = ({𝐴} ∪ ({𝐵} ∪ {𝐶, 𝐷})) |
6 | 1, 3, 5 | 3eqtr4i 2831 | 1 ⊢ ({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = ({𝐴} ∪ {𝐵, 𝐶, 𝐷}) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1525 ∪ cun 3863 {csn 4478 {cpr 4480 {ctp 4482 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-ext 2771 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-v 3442 df-un 3870 df-sn 4479 df-pr 4481 df-tp 4483 |
This theorem is referenced by: en4 8609 ex-pw 27896 |
Copyright terms: Public domain | W3C validator |