MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-pw Structured version   Visualization version   GIF version

Theorem ex-pw 30410
Description: Example for df-pw 4577. Example by David A. Wheeler. (Contributed by Mario Carneiro, 2-Jul-2016.)
Assertion
Ref Expression
ex-pw (𝐴 = {3, 5, 7} → 𝒫 𝐴 = (({∅} ∪ {{3}, {5}, {7}}) ∪ ({{3, 5}, {3, 7}, {5, 7}} ∪ {{3, 5, 7}})))

Proof of Theorem ex-pw
StepHypRef Expression
1 pweq 4589 . 2 (𝐴 = {3, 5, 7} → 𝒫 𝐴 = 𝒫 {3, 5, 7})
2 qdass 4729 . . . 4 ({∅, {3}} ∪ {{5}, {3, 5}}) = ({∅, {3}, {5}} ∪ {{3, 5}})
3 qdassr 4730 . . . 4 ({{7}, {3, 7}} ∪ {{5, 7}, {3, 5, 7}}) = ({{7}} ∪ {{3, 7}, {5, 7}, {3, 5, 7}})
42, 3uneq12i 4141 . . 3 (({∅, {3}} ∪ {{5}, {3, 5}}) ∪ ({{7}, {3, 7}} ∪ {{5, 7}, {3, 5, 7}})) = (({∅, {3}, {5}} ∪ {{3, 5}}) ∪ ({{7}} ∪ {{3, 7}, {5, 7}, {3, 5, 7}}))
5 pwtp 4878 . . 3 𝒫 {3, 5, 7} = (({∅, {3}} ∪ {{5}, {3, 5}}) ∪ ({{7}, {3, 7}} ∪ {{5, 7}, {3, 5, 7}}))
6 df-tp 4606 . . . . . . . 8 {{3}, {5}, {7}} = ({{3}, {5}} ∪ {{7}})
76uneq2i 4140 . . . . . . 7 ({∅} ∪ {{3}, {5}, {7}}) = ({∅} ∪ ({{3}, {5}} ∪ {{7}}))
8 unass 4147 . . . . . . 7 (({∅} ∪ {{3}, {5}}) ∪ {{7}}) = ({∅} ∪ ({{3}, {5}} ∪ {{7}}))
97, 8eqtr4i 2761 . . . . . 6 ({∅} ∪ {{3}, {5}, {7}}) = (({∅} ∪ {{3}, {5}}) ∪ {{7}})
10 tpass 4728 . . . . . . 7 {∅, {3}, {5}} = ({∅} ∪ {{3}, {5}})
1110uneq1i 4139 . . . . . 6 ({∅, {3}, {5}} ∪ {{7}}) = (({∅} ∪ {{3}, {5}}) ∪ {{7}})
129, 11eqtr4i 2761 . . . . 5 ({∅} ∪ {{3}, {5}, {7}}) = ({∅, {3}, {5}} ∪ {{7}})
13 unass 4147 . . . . . 6 (({{3, 5}} ∪ {{3, 7}, {5, 7}}) ∪ {{3, 5, 7}}) = ({{3, 5}} ∪ ({{3, 7}, {5, 7}} ∪ {{3, 5, 7}}))
14 tpass 4728 . . . . . . 7 {{3, 5}, {3, 7}, {5, 7}} = ({{3, 5}} ∪ {{3, 7}, {5, 7}})
1514uneq1i 4139 . . . . . 6 ({{3, 5}, {3, 7}, {5, 7}} ∪ {{3, 5, 7}}) = (({{3, 5}} ∪ {{3, 7}, {5, 7}}) ∪ {{3, 5, 7}})
16 df-tp 4606 . . . . . . 7 {{3, 7}, {5, 7}, {3, 5, 7}} = ({{3, 7}, {5, 7}} ∪ {{3, 5, 7}})
1716uneq2i 4140 . . . . . 6 ({{3, 5}} ∪ {{3, 7}, {5, 7}, {3, 5, 7}}) = ({{3, 5}} ∪ ({{3, 7}, {5, 7}} ∪ {{3, 5, 7}}))
1813, 15, 173eqtr4i 2768 . . . . 5 ({{3, 5}, {3, 7}, {5, 7}} ∪ {{3, 5, 7}}) = ({{3, 5}} ∪ {{3, 7}, {5, 7}, {3, 5, 7}})
1912, 18uneq12i 4141 . . . 4 (({∅} ∪ {{3}, {5}, {7}}) ∪ ({{3, 5}, {3, 7}, {5, 7}} ∪ {{3, 5, 7}})) = (({∅, {3}, {5}} ∪ {{7}}) ∪ ({{3, 5}} ∪ {{3, 7}, {5, 7}, {3, 5, 7}}))
20 un4 4150 . . . 4 (({∅, {3}, {5}} ∪ {{3, 5}}) ∪ ({{7}} ∪ {{3, 7}, {5, 7}, {3, 5, 7}})) = (({∅, {3}, {5}} ∪ {{7}}) ∪ ({{3, 5}} ∪ {{3, 7}, {5, 7}, {3, 5, 7}}))
2119, 20eqtr4i 2761 . . 3 (({∅} ∪ {{3}, {5}, {7}}) ∪ ({{3, 5}, {3, 7}, {5, 7}} ∪ {{3, 5, 7}})) = (({∅, {3}, {5}} ∪ {{3, 5}}) ∪ ({{7}} ∪ {{3, 7}, {5, 7}, {3, 5, 7}}))
224, 5, 213eqtr4i 2768 . 2 𝒫 {3, 5, 7} = (({∅} ∪ {{3}, {5}, {7}}) ∪ ({{3, 5}, {3, 7}, {5, 7}} ∪ {{3, 5, 7}}))
231, 22eqtrdi 2786 1 (𝐴 = {3, 5, 7} → 𝒫 𝐴 = (({∅} ∪ {{3}, {5}, {7}}) ∪ ({{3, 5}, {3, 7}, {5, 7}} ∪ {{3, 5, 7}})))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cun 3924  c0 4308  𝒫 cpw 4575  {csn 4601  {cpr 4603  {ctp 4605  3c3 12296  5c5 12298  7c7 12300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator