![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tpass | Structured version Visualization version GIF version |
Description: Split off the first element of an unordered triple. (Contributed by Mario Carneiro, 5-Jan-2016.) |
Ref | Expression |
---|---|
tpass | ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴} ∪ {𝐵, 𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tp 4477 | . 2 ⊢ {𝐵, 𝐶, 𝐴} = ({𝐵, 𝐶} ∪ {𝐴}) | |
2 | tprot 4592 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴} | |
3 | uncom 4050 | . 2 ⊢ ({𝐴} ∪ {𝐵, 𝐶}) = ({𝐵, 𝐶} ∪ {𝐴}) | |
4 | 1, 2, 3 | 3eqtr4i 2829 | 1 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴} ∪ {𝐵, 𝐶}) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1522 ∪ cun 3857 {csn 4472 {cpr 4474 {ctp 4476 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-v 3439 df-un 3864 df-sn 4473 df-pr 4475 df-tp 4477 |
This theorem is referenced by: qdassr 4597 en3 8601 wuntp 9979 ex-pw 27900 |
Copyright terms: Public domain | W3C validator |