| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpass | Structured version Visualization version GIF version | ||
| Description: Split off the first element of an unordered triple. (Contributed by Mario Carneiro, 5-Jan-2016.) |
| Ref | Expression |
|---|---|
| tpass | ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴} ∪ {𝐵, 𝐶}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tp 4581 | . 2 ⊢ {𝐵, 𝐶, 𝐴} = ({𝐵, 𝐶} ∪ {𝐴}) | |
| 2 | tprot 4702 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴} | |
| 3 | uncom 4108 | . 2 ⊢ ({𝐴} ∪ {𝐵, 𝐶}) = ({𝐵, 𝐶} ∪ {𝐴}) | |
| 4 | 1, 2, 3 | 3eqtr4i 2764 | 1 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴} ∪ {𝐵, 𝐶}) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∪ cun 3900 {csn 4576 {cpr 4578 {ctp 4580 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3907 df-sn 4577 df-pr 4579 df-tp 4581 |
| This theorem is referenced by: qdassr 4707 en3 9165 wuntp 10599 symgvalstruct 19307 ex-pw 30404 |
| Copyright terms: Public domain | W3C validator |