MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpass Structured version   Visualization version   GIF version

Theorem tpass 4718
Description: Split off the first element of an unordered triple. (Contributed by Mario Carneiro, 5-Jan-2016.)
Assertion
Ref Expression
tpass {𝐴, 𝐵, 𝐶} = ({𝐴} ∪ {𝐵, 𝐶})

Proof of Theorem tpass
StepHypRef Expression
1 df-tp 4596 . 2 {𝐵, 𝐶, 𝐴} = ({𝐵, 𝐶} ∪ {𝐴})
2 tprot 4715 . 2 {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴}
3 uncom 4123 . 2 ({𝐴} ∪ {𝐵, 𝐶}) = ({𝐵, 𝐶} ∪ {𝐴})
41, 2, 33eqtr4i 2763 1 {𝐴, 𝐵, 𝐶} = ({𝐴} ∪ {𝐵, 𝐶})
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cun 3914  {csn 4591  {cpr 4593  {ctp 4595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-un 3921  df-sn 4592  df-pr 4594  df-tp 4596
This theorem is referenced by:  qdassr  4720  en3  9233  wuntp  10670  symgvalstruct  19333  ex-pw  30364
  Copyright terms: Public domain W3C validator