MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qseq2 Structured version   Visualization version   GIF version

Theorem qseq2 8553
Description: Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
qseq2 (𝐴 = 𝐵 → (𝐶 / 𝐴) = (𝐶 / 𝐵))

Proof of Theorem qseq2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eceq2 8538 . . . . 5 (𝐴 = 𝐵 → [𝑥]𝐴 = [𝑥]𝐵)
21eqeq2d 2749 . . . 4 (𝐴 = 𝐵 → (𝑦 = [𝑥]𝐴𝑦 = [𝑥]𝐵))
32rexbidv 3226 . . 3 (𝐴 = 𝐵 → (∃𝑥𝐶 𝑦 = [𝑥]𝐴 ↔ ∃𝑥𝐶 𝑦 = [𝑥]𝐵))
43abbidv 2807 . 2 (𝐴 = 𝐵 → {𝑦 ∣ ∃𝑥𝐶 𝑦 = [𝑥]𝐴} = {𝑦 ∣ ∃𝑥𝐶 𝑦 = [𝑥]𝐵})
5 df-qs 8504 . 2 (𝐶 / 𝐴) = {𝑦 ∣ ∃𝑥𝐶 𝑦 = [𝑥]𝐴}
6 df-qs 8504 . 2 (𝐶 / 𝐵) = {𝑦 ∣ ∃𝑥𝐶 𝑦 = [𝑥]𝐵}
74, 5, 63eqtr4g 2803 1 (𝐴 = 𝐵 → (𝐶 / 𝐴) = (𝐶 / 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  {cab 2715  wrex 3065  [cec 8496   / cqs 8497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ec 8500  df-qs 8504
This theorem is referenced by:  qseq2i  8554  qseq2d  8555  qseq12  8556  pi1bas3  24206  pstmval  31845
  Copyright terms: Public domain W3C validator