Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > qseq2 | Structured version Visualization version GIF version |
Description: Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.) |
Ref | Expression |
---|---|
qseq2 | ⊢ (𝐴 = 𝐵 → (𝐶 / 𝐴) = (𝐶 / 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eceq2 8496 | . . . . 5 ⊢ (𝐴 = 𝐵 → [𝑥]𝐴 = [𝑥]𝐵) | |
2 | 1 | eqeq2d 2749 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑦 = [𝑥]𝐴 ↔ 𝑦 = [𝑥]𝐵)) |
3 | 2 | rexbidv 3225 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐶 𝑦 = [𝑥]𝐴 ↔ ∃𝑥 ∈ 𝐶 𝑦 = [𝑥]𝐵)) |
4 | 3 | abbidv 2808 | . 2 ⊢ (𝐴 = 𝐵 → {𝑦 ∣ ∃𝑥 ∈ 𝐶 𝑦 = [𝑥]𝐴} = {𝑦 ∣ ∃𝑥 ∈ 𝐶 𝑦 = [𝑥]𝐵}) |
5 | df-qs 8462 | . 2 ⊢ (𝐶 / 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐶 𝑦 = [𝑥]𝐴} | |
6 | df-qs 8462 | . 2 ⊢ (𝐶 / 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐶 𝑦 = [𝑥]𝐵} | |
7 | 4, 5, 6 | 3eqtr4g 2804 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 / 𝐴) = (𝐶 / 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 {cab 2715 ∃wrex 3064 [cec 8454 / cqs 8455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ec 8458 df-qs 8462 |
This theorem is referenced by: qseq2i 8512 qseq2d 8513 qseq12 8514 pi1bas3 24112 pstmval 31747 |
Copyright terms: Public domain | W3C validator |