| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qseq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.) |
| Ref | Expression |
|---|---|
| qseq2 | ⊢ (𝐴 = 𝐵 → (𝐶 / 𝐴) = (𝐶 / 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eceq2 8765 | . . . . 5 ⊢ (𝐴 = 𝐵 → [𝑥]𝐴 = [𝑥]𝐵) | |
| 2 | 1 | eqeq2d 2747 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑦 = [𝑥]𝐴 ↔ 𝑦 = [𝑥]𝐵)) |
| 3 | 2 | rexbidv 3165 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐶 𝑦 = [𝑥]𝐴 ↔ ∃𝑥 ∈ 𝐶 𝑦 = [𝑥]𝐵)) |
| 4 | 3 | abbidv 2802 | . 2 ⊢ (𝐴 = 𝐵 → {𝑦 ∣ ∃𝑥 ∈ 𝐶 𝑦 = [𝑥]𝐴} = {𝑦 ∣ ∃𝑥 ∈ 𝐶 𝑦 = [𝑥]𝐵}) |
| 5 | df-qs 8730 | . 2 ⊢ (𝐶 / 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐶 𝑦 = [𝑥]𝐴} | |
| 6 | df-qs 8730 | . 2 ⊢ (𝐶 / 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐶 𝑦 = [𝑥]𝐵} | |
| 7 | 4, 5, 6 | 3eqtr4g 2796 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 / 𝐴) = (𝐶 / 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 {cab 2714 ∃wrex 3061 [cec 8722 / cqs 8723 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-cnv 5667 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ec 8726 df-qs 8730 |
| This theorem is referenced by: qseq2i 8782 qseq2d 8784 qseq12 8785 pi1bas3 24999 |
| Copyright terms: Public domain | W3C validator |