Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  qseq2 Structured version   Visualization version   GIF version

Theorem qseq2 8000
 Description: Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
qseq2 (𝐴 = 𝐵 → (𝐶 / 𝐴) = (𝐶 / 𝐵))

Proof of Theorem qseq2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eceq2 7987 . . . . 5 (𝐴 = 𝐵 → [𝑥]𝐴 = [𝑥]𝐵)
21eqeq2d 2775 . . . 4 (𝐴 = 𝐵 → (𝑦 = [𝑥]𝐴𝑦 = [𝑥]𝐵))
32rexbidv 3199 . . 3 (𝐴 = 𝐵 → (∃𝑥𝐶 𝑦 = [𝑥]𝐴 ↔ ∃𝑥𝐶 𝑦 = [𝑥]𝐵))
43abbidv 2884 . 2 (𝐴 = 𝐵 → {𝑦 ∣ ∃𝑥𝐶 𝑦 = [𝑥]𝐴} = {𝑦 ∣ ∃𝑥𝐶 𝑦 = [𝑥]𝐵})
5 df-qs 7953 . 2 (𝐶 / 𝐴) = {𝑦 ∣ ∃𝑥𝐶 𝑦 = [𝑥]𝐴}
6 df-qs 7953 . 2 (𝐶 / 𝐵) = {𝑦 ∣ ∃𝑥𝐶 𝑦 = [𝑥]𝐵}
74, 5, 63eqtr4g 2824 1 (𝐴 = 𝐵 → (𝐶 / 𝐴) = (𝐶 / 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1652  {cab 2751  ∃wrex 3056  [cec 7945   / cqs 7946 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743 This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-rex 3061  df-rab 3064  df-v 3352  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-sn 4335  df-pr 4337  df-op 4341  df-br 4810  df-opab 4872  df-cnv 5285  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-ec 7949  df-qs 7953 This theorem is referenced by:  pi1bas3  23121  pstmval  30320  qseq2i  34420  qseq2d  34421  qseq12  34422
 Copyright terms: Public domain W3C validator