MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qseq2 Structured version   Visualization version   GIF version

Theorem qseq2 8677
Description: Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
qseq2 (𝐴 = 𝐵 → (𝐶 / 𝐴) = (𝐶 / 𝐵))

Proof of Theorem qseq2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eceq2 8658 . . . . 5 (𝐴 = 𝐵 → [𝑥]𝐴 = [𝑥]𝐵)
21eqeq2d 2742 . . . 4 (𝐴 = 𝐵 → (𝑦 = [𝑥]𝐴𝑦 = [𝑥]𝐵))
32rexbidv 3156 . . 3 (𝐴 = 𝐵 → (∃𝑥𝐶 𝑦 = [𝑥]𝐴 ↔ ∃𝑥𝐶 𝑦 = [𝑥]𝐵))
43abbidv 2797 . 2 (𝐴 = 𝐵 → {𝑦 ∣ ∃𝑥𝐶 𝑦 = [𝑥]𝐴} = {𝑦 ∣ ∃𝑥𝐶 𝑦 = [𝑥]𝐵})
5 df-qs 8623 . 2 (𝐶 / 𝐴) = {𝑦 ∣ ∃𝑥𝐶 𝑦 = [𝑥]𝐴}
6 df-qs 8623 . 2 (𝐶 / 𝐵) = {𝑦 ∣ ∃𝑥𝐶 𝑦 = [𝑥]𝐵}
74, 5, 63eqtr4g 2791 1 (𝐴 = 𝐵 → (𝐶 / 𝐴) = (𝐶 / 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  {cab 2709  wrex 3056  [cec 8615   / cqs 8616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-cnv 5619  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-ec 8619  df-qs 8623
This theorem is referenced by:  qseq2i  8678  qseq2d  8680  qseq12  8681  pi1bas3  24965
  Copyright terms: Public domain W3C validator