![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ecidsn | Structured version Visualization version GIF version |
Description: An equivalence class modulo the identity relation is a singleton. (Contributed by NM, 24-Oct-2004.) |
Ref | Expression |
---|---|
ecidsn | ⊢ [𝐴] I = {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ec 8746 | . 2 ⊢ [𝐴] I = ( I “ {𝐴}) | |
2 | imai 6094 | . 2 ⊢ ( I “ {𝐴}) = {𝐴} | |
3 | 1, 2 | eqtri 2763 | 1 ⊢ [𝐴] I = {𝐴} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 {csn 4631 I cid 5582 “ cima 5692 [cec 8742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ec 8746 |
This theorem is referenced by: extid 38292 |
Copyright terms: Public domain | W3C validator |