| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ecopqsi | Structured version Visualization version GIF version | ||
| Description: "Closure" law for equivalence class of ordered pairs. (Contributed by NM, 25-Mar-1996.) |
| Ref | Expression |
|---|---|
| ecopqsi.1 | ⊢ 𝑅 ∈ V |
| ecopqsi.2 | ⊢ 𝑆 = ((𝐴 × 𝐴) / 𝑅) |
| Ref | Expression |
|---|---|
| ecopqsi | ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → [〈𝐵, 𝐶〉]𝑅 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi 5660 | . 2 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → 〈𝐵, 𝐶〉 ∈ (𝐴 × 𝐴)) | |
| 2 | ecopqsi.1 | . . . 4 ⊢ 𝑅 ∈ V | |
| 3 | 2 | ecelqsi 8704 | . . 3 ⊢ (〈𝐵, 𝐶〉 ∈ (𝐴 × 𝐴) → [〈𝐵, 𝐶〉]𝑅 ∈ ((𝐴 × 𝐴) / 𝑅)) |
| 4 | ecopqsi.2 | . . 3 ⊢ 𝑆 = ((𝐴 × 𝐴) / 𝑅) | |
| 5 | 3, 4 | eleqtrrdi 2839 | . 2 ⊢ (〈𝐵, 𝐶〉 ∈ (𝐴 × 𝐴) → [〈𝐵, 𝐶〉]𝑅 ∈ 𝑆) |
| 6 | 1, 5 | syl 17 | 1 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → [〈𝐵, 𝐶〉]𝑅 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 〈cop 4585 × cxp 5621 [cec 8630 / cqs 8631 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-cnv 5631 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ec 8634 df-qs 8638 |
| This theorem is referenced by: brecop 8744 recexsrlem 11016 |
| Copyright terms: Public domain | W3C validator |