MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecopqsi Structured version   Visualization version   GIF version

Theorem ecopqsi 8744
Description: "Closure" law for equivalence class of ordered pairs. (Contributed by NM, 25-Mar-1996.)
Hypotheses
Ref Expression
ecopqsi.1 𝑅 ∈ V
ecopqsi.2 𝑆 = ((𝐴 × 𝐴) / 𝑅)
Assertion
Ref Expression
ecopqsi ((𝐵𝐴𝐶𝐴) → [⟨𝐵, 𝐶⟩]𝑅𝑆)

Proof of Theorem ecopqsi
StepHypRef Expression
1 opelxpi 5675 . 2 ((𝐵𝐴𝐶𝐴) → ⟨𝐵, 𝐶⟩ ∈ (𝐴 × 𝐴))
2 ecopqsi.1 . . . 4 𝑅 ∈ V
32ecelqsi 8743 . . 3 (⟨𝐵, 𝐶⟩ ∈ (𝐴 × 𝐴) → [⟨𝐵, 𝐶⟩]𝑅 ∈ ((𝐴 × 𝐴) / 𝑅))
4 ecopqsi.2 . . 3 𝑆 = ((𝐴 × 𝐴) / 𝑅)
53, 4eleqtrrdi 2839 . 2 (⟨𝐵, 𝐶⟩ ∈ (𝐴 × 𝐴) → [⟨𝐵, 𝐶⟩]𝑅𝑆)
61, 5syl 17 1 ((𝐵𝐴𝐶𝐴) → [⟨𝐵, 𝐶⟩]𝑅𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  cop 4595   × cxp 5636  [cec 8669   / cqs 8670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ec 8673  df-qs 8677
This theorem is referenced by:  brecop  8783  recexsrlem  11056
  Copyright terms: Public domain W3C validator