| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ecopqsi | Structured version Visualization version GIF version | ||
| Description: "Closure" law for equivalence class of ordered pairs. (Contributed by NM, 25-Mar-1996.) |
| Ref | Expression |
|---|---|
| ecopqsi.1 | ⊢ 𝑅 ∈ V |
| ecopqsi.2 | ⊢ 𝑆 = ((𝐴 × 𝐴) / 𝑅) |
| Ref | Expression |
|---|---|
| ecopqsi | ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → [〈𝐵, 𝐶〉]𝑅 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi 5651 | . 2 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → 〈𝐵, 𝐶〉 ∈ (𝐴 × 𝐴)) | |
| 2 | ecopqsi.1 | . . . 4 ⊢ 𝑅 ∈ V | |
| 3 | 2 | ecelqsi 8694 | . . 3 ⊢ (〈𝐵, 𝐶〉 ∈ (𝐴 × 𝐴) → [〈𝐵, 𝐶〉]𝑅 ∈ ((𝐴 × 𝐴) / 𝑅)) |
| 4 | ecopqsi.2 | . . 3 ⊢ 𝑆 = ((𝐴 × 𝐴) / 𝑅) | |
| 5 | 3, 4 | eleqtrrdi 2842 | . 2 ⊢ (〈𝐵, 𝐶〉 ∈ (𝐴 × 𝐴) → [〈𝐵, 𝐶〉]𝑅 ∈ 𝑆) |
| 6 | 1, 5 | syl 17 | 1 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → [〈𝐵, 𝐶〉]𝑅 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4579 × cxp 5612 [cec 8620 / cqs 8621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ec 8624 df-qs 8628 |
| This theorem is referenced by: brecop 8734 recexsrlem 10994 |
| Copyright terms: Public domain | W3C validator |