|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ecopqsi | Structured version Visualization version GIF version | ||
| Description: "Closure" law for equivalence class of ordered pairs. (Contributed by NM, 25-Mar-1996.) | 
| Ref | Expression | 
|---|---|
| ecopqsi.1 | ⊢ 𝑅 ∈ V | 
| ecopqsi.2 | ⊢ 𝑆 = ((𝐴 × 𝐴) / 𝑅) | 
| Ref | Expression | 
|---|---|
| ecopqsi | ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → [〈𝐵, 𝐶〉]𝑅 ∈ 𝑆) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | opelxpi 5721 | . 2 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → 〈𝐵, 𝐶〉 ∈ (𝐴 × 𝐴)) | |
| 2 | ecopqsi.1 | . . . 4 ⊢ 𝑅 ∈ V | |
| 3 | 2 | ecelqsi 8814 | . . 3 ⊢ (〈𝐵, 𝐶〉 ∈ (𝐴 × 𝐴) → [〈𝐵, 𝐶〉]𝑅 ∈ ((𝐴 × 𝐴) / 𝑅)) | 
| 4 | ecopqsi.2 | . . 3 ⊢ 𝑆 = ((𝐴 × 𝐴) / 𝑅) | |
| 5 | 3, 4 | eleqtrrdi 2851 | . 2 ⊢ (〈𝐵, 𝐶〉 ∈ (𝐴 × 𝐴) → [〈𝐵, 𝐶〉]𝑅 ∈ 𝑆) | 
| 6 | 1, 5 | syl 17 | 1 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → [〈𝐵, 𝐶〉]𝑅 ∈ 𝑆) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3479 〈cop 4631 × cxp 5682 [cec 8744 / cqs 8745 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-xp 5690 df-cnv 5692 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-ec 8748 df-qs 8752 | 
| This theorem is referenced by: brecop 8851 recexsrlem 11144 | 
| Copyright terms: Public domain | W3C validator |