![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ecopqsi | Structured version Visualization version GIF version |
Description: "Closure" law for equivalence class of ordered pairs. (Contributed by NM, 25-Mar-1996.) |
Ref | Expression |
---|---|
ecopqsi.1 | ⊢ 𝑅 ∈ V |
ecopqsi.2 | ⊢ 𝑆 = ((𝐴 × 𝐴) / 𝑅) |
Ref | Expression |
---|---|
ecopqsi | ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → [⟨𝐵, 𝐶⟩]𝑅 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5719 | . 2 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → ⟨𝐵, 𝐶⟩ ∈ (𝐴 × 𝐴)) | |
2 | ecopqsi.1 | . . . 4 ⊢ 𝑅 ∈ V | |
3 | 2 | ecelqsi 8798 | . . 3 ⊢ (⟨𝐵, 𝐶⟩ ∈ (𝐴 × 𝐴) → [⟨𝐵, 𝐶⟩]𝑅 ∈ ((𝐴 × 𝐴) / 𝑅)) |
4 | ecopqsi.2 | . . 3 ⊢ 𝑆 = ((𝐴 × 𝐴) / 𝑅) | |
5 | 3, 4 | eleqtrrdi 2840 | . 2 ⊢ (⟨𝐵, 𝐶⟩ ∈ (𝐴 × 𝐴) → [⟨𝐵, 𝐶⟩]𝑅 ∈ 𝑆) |
6 | 1, 5 | syl 17 | 1 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → [⟨𝐵, 𝐶⟩]𝑅 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3473 ⟨cop 4638 × cxp 5680 [cec 8729 / cqs 8730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-xp 5688 df-cnv 5690 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-ec 8733 df-qs 8737 |
This theorem is referenced by: brecop 8835 recexsrlem 11134 |
Copyright terms: Public domain | W3C validator |