MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecopqsi Structured version   Visualization version   GIF version

Theorem ecopqsi 8799
Description: "Closure" law for equivalence class of ordered pairs. (Contributed by NM, 25-Mar-1996.)
Hypotheses
Ref Expression
ecopqsi.1 𝑅 ∈ V
ecopqsi.2 𝑆 = ((𝐴 × 𝐴) / 𝑅)
Assertion
Ref Expression
ecopqsi ((𝐵𝐴𝐶𝐴) → [⟨𝐵, 𝐶⟩]𝑅𝑆)

Proof of Theorem ecopqsi
StepHypRef Expression
1 opelxpi 5719 . 2 ((𝐵𝐴𝐶𝐴) → ⟨𝐵, 𝐶⟩ ∈ (𝐴 × 𝐴))
2 ecopqsi.1 . . . 4 𝑅 ∈ V
32ecelqsi 8798 . . 3 (⟨𝐵, 𝐶⟩ ∈ (𝐴 × 𝐴) → [⟨𝐵, 𝐶⟩]𝑅 ∈ ((𝐴 × 𝐴) / 𝑅))
4 ecopqsi.2 . . 3 𝑆 = ((𝐴 × 𝐴) / 𝑅)
53, 4eleqtrrdi 2840 . 2 (⟨𝐵, 𝐶⟩ ∈ (𝐴 × 𝐴) → [⟨𝐵, 𝐶⟩]𝑅𝑆)
61, 5syl 17 1 ((𝐵𝐴𝐶𝐴) → [⟨𝐵, 𝐶⟩]𝑅𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  Vcvv 3473  cop 4638   × cxp 5680  [cec 8729   / cqs 8730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-xp 5688  df-cnv 5690  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-ec 8733  df-qs 8737
This theorem is referenced by:  brecop  8835  recexsrlem  11134
  Copyright terms: Public domain W3C validator