MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecopqsi Structured version   Visualization version   GIF version

Theorem ecopqsi 8793
Description: "Closure" law for equivalence class of ordered pairs. (Contributed by NM, 25-Mar-1996.)
Hypotheses
Ref Expression
ecopqsi.1 𝑅 ∈ V
ecopqsi.2 𝑆 = ((𝐴 × 𝐴) / 𝑅)
Assertion
Ref Expression
ecopqsi ((𝐵𝐴𝐶𝐴) → [⟨𝐵, 𝐶⟩]𝑅𝑆)

Proof of Theorem ecopqsi
StepHypRef Expression
1 opelxpi 5696 . 2 ((𝐵𝐴𝐶𝐴) → ⟨𝐵, 𝐶⟩ ∈ (𝐴 × 𝐴))
2 ecopqsi.1 . . . 4 𝑅 ∈ V
32ecelqsi 8792 . . 3 (⟨𝐵, 𝐶⟩ ∈ (𝐴 × 𝐴) → [⟨𝐵, 𝐶⟩]𝑅 ∈ ((𝐴 × 𝐴) / 𝑅))
4 ecopqsi.2 . . 3 𝑆 = ((𝐴 × 𝐴) / 𝑅)
53, 4eleqtrrdi 2846 . 2 (⟨𝐵, 𝐶⟩ ∈ (𝐴 × 𝐴) → [⟨𝐵, 𝐶⟩]𝑅𝑆)
61, 5syl 17 1 ((𝐵𝐴𝐶𝐴) → [⟨𝐵, 𝐶⟩]𝑅𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3464  cop 4612   × cxp 5657  [cec 8722   / cqs 8723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-xp 5665  df-cnv 5667  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ec 8726  df-qs 8730
This theorem is referenced by:  brecop  8829  recexsrlem  11122
  Copyright terms: Public domain W3C validator