![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > imaexALTV | Structured version Visualization version GIF version |
Description: Existence of an image of a class. Theorem 3.17 of [Monk1] p. 39. (cf. imaexg 7947) with weakened antecedent: only the restriction of 𝐴 by a set needs to be a set, not 𝐴 itself, see e.g. cnvepimaex 38284. (Contributed by Peter Mazsa, 22-Feb-2023.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
imaexALTV | ⊢ ((𝐴 ∈ 𝑉 ∨ ((𝐴 ↾ 𝐵) ∈ 𝑊 ∧ 𝐵 ∈ 𝑋)) → (𝐴 “ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imassrn 6095 | . . 3 ⊢ (𝐴 “ 𝐵) ⊆ ran 𝐴 | |
2 | rnexg 7936 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) | |
3 | ssexg 5341 | . . 3 ⊢ (((𝐴 “ 𝐵) ⊆ ran 𝐴 ∧ ran 𝐴 ∈ V) → (𝐴 “ 𝐵) ∈ V) | |
4 | 1, 2, 3 | sylancr 586 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 “ 𝐵) ∈ V) |
5 | qsexg 8827 | . . . . 5 ⊢ (𝐵 ∈ 𝑋 → (𝐵 / 𝐴) ∈ V) | |
6 | uniexg 7769 | . . . . 5 ⊢ ((𝐵 / 𝐴) ∈ V → ∪ (𝐵 / 𝐴) ∈ V) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝐵 ∈ 𝑋 → ∪ (𝐵 / 𝐴) ∈ V) |
8 | uniqsALTV 38277 | . . . . 5 ⊢ ((𝐴 ↾ 𝐵) ∈ 𝑊 → ∪ (𝐵 / 𝐴) = (𝐴 “ 𝐵)) | |
9 | 8 | eleq1d 2829 | . . . 4 ⊢ ((𝐴 ↾ 𝐵) ∈ 𝑊 → (∪ (𝐵 / 𝐴) ∈ V ↔ (𝐴 “ 𝐵) ∈ V)) |
10 | 7, 9 | imbitrid 244 | . . 3 ⊢ ((𝐴 ↾ 𝐵) ∈ 𝑊 → (𝐵 ∈ 𝑋 → (𝐴 “ 𝐵) ∈ V)) |
11 | 10 | imp 406 | . 2 ⊢ (((𝐴 ↾ 𝐵) ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → (𝐴 “ 𝐵) ∈ V) |
12 | 4, 11 | jaoi 856 | 1 ⊢ ((𝐴 ∈ 𝑉 ∨ ((𝐴 ↾ 𝐵) ∈ 𝑊 ∧ 𝐵 ∈ 𝑋)) → (𝐴 “ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 ∪ cuni 4931 ran crn 5696 ↾ cres 5697 “ cima 5698 / cqs 8756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7764 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-xp 5701 df-rel 5702 df-cnv 5703 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-ec 8759 df-qs 8763 |
This theorem is referenced by: ecexALTV 38279 cnvepimaex 38284 |
Copyright terms: Public domain | W3C validator |