Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imaexALTV Structured version   Visualization version   GIF version

Theorem imaexALTV 36392
Description: Existence of an image of a class. Theorem 3.17 of [Monk1] p. 39. (cf. imaexg 7736) with weakened antecedent: only the restricion of 𝐴 by a set needs to be a set, not 𝐴 itself, see e.g. cnvepimaex 36398. (Contributed by Peter Mazsa, 22-Feb-2023.) (Proof modification is discouraged.)
Assertion
Ref Expression
imaexALTV ((𝐴𝑉 ∨ ((𝐴𝐵) ∈ 𝑊𝐵𝑋)) → (𝐴𝐵) ∈ V)

Proof of Theorem imaexALTV
StepHypRef Expression
1 imassrn 5969 . . 3 (𝐴𝐵) ⊆ ran 𝐴
2 rnexg 7725 . . 3 (𝐴𝑉 → ran 𝐴 ∈ V)
3 ssexg 5242 . . 3 (((𝐴𝐵) ⊆ ran 𝐴 ∧ ran 𝐴 ∈ V) → (𝐴𝐵) ∈ V)
41, 2, 3sylancr 586 . 2 (𝐴𝑉 → (𝐴𝐵) ∈ V)
5 qsexg 8522 . . . . 5 (𝐵𝑋 → (𝐵 / 𝐴) ∈ V)
6 uniexg 7571 . . . . 5 ((𝐵 / 𝐴) ∈ V → (𝐵 / 𝐴) ∈ V)
75, 6syl 17 . . . 4 (𝐵𝑋 (𝐵 / 𝐴) ∈ V)
8 uniqsALTV 36391 . . . . 5 ((𝐴𝐵) ∈ 𝑊 (𝐵 / 𝐴) = (𝐴𝐵))
98eleq1d 2823 . . . 4 ((𝐴𝐵) ∈ 𝑊 → ( (𝐵 / 𝐴) ∈ V ↔ (𝐴𝐵) ∈ V))
107, 9syl5ib 243 . . 3 ((𝐴𝐵) ∈ 𝑊 → (𝐵𝑋 → (𝐴𝐵) ∈ V))
1110imp 406 . 2 (((𝐴𝐵) ∈ 𝑊𝐵𝑋) → (𝐴𝐵) ∈ V)
124, 11jaoi 853 1 ((𝐴𝑉 ∨ ((𝐴𝐵) ∈ 𝑊𝐵𝑋)) → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843  wcel 2108  Vcvv 3422  wss 3883   cuni 4836  ran crn 5581  cres 5582  cima 5583   / cqs 8455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ec 8458  df-qs 8462
This theorem is referenced by:  ecexALTV  36393  cnvepimaex  36398
  Copyright terms: Public domain W3C validator