Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > imaexALTV | Structured version Visualization version GIF version |
Description: Existence of an image of a class. Theorem 3.17 of [Monk1] p. 39. (cf. imaexg 7762) with weakened antecedent: only the restricion of 𝐴 by a set needs to be a set, not 𝐴 itself, see e.g. cnvepimaex 36471. (Contributed by Peter Mazsa, 22-Feb-2023.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
imaexALTV | ⊢ ((𝐴 ∈ 𝑉 ∨ ((𝐴 ↾ 𝐵) ∈ 𝑊 ∧ 𝐵 ∈ 𝑋)) → (𝐴 “ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imassrn 5980 | . . 3 ⊢ (𝐴 “ 𝐵) ⊆ ran 𝐴 | |
2 | rnexg 7751 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) | |
3 | ssexg 5247 | . . 3 ⊢ (((𝐴 “ 𝐵) ⊆ ran 𝐴 ∧ ran 𝐴 ∈ V) → (𝐴 “ 𝐵) ∈ V) | |
4 | 1, 2, 3 | sylancr 587 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 “ 𝐵) ∈ V) |
5 | qsexg 8564 | . . . . 5 ⊢ (𝐵 ∈ 𝑋 → (𝐵 / 𝐴) ∈ V) | |
6 | uniexg 7593 | . . . . 5 ⊢ ((𝐵 / 𝐴) ∈ V → ∪ (𝐵 / 𝐴) ∈ V) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝐵 ∈ 𝑋 → ∪ (𝐵 / 𝐴) ∈ V) |
8 | uniqsALTV 36464 | . . . . 5 ⊢ ((𝐴 ↾ 𝐵) ∈ 𝑊 → ∪ (𝐵 / 𝐴) = (𝐴 “ 𝐵)) | |
9 | 8 | eleq1d 2823 | . . . 4 ⊢ ((𝐴 ↾ 𝐵) ∈ 𝑊 → (∪ (𝐵 / 𝐴) ∈ V ↔ (𝐴 “ 𝐵) ∈ V)) |
10 | 7, 9 | syl5ib 243 | . . 3 ⊢ ((𝐴 ↾ 𝐵) ∈ 𝑊 → (𝐵 ∈ 𝑋 → (𝐴 “ 𝐵) ∈ V)) |
11 | 10 | imp 407 | . 2 ⊢ (((𝐴 ↾ 𝐵) ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → (𝐴 “ 𝐵) ∈ V) |
12 | 4, 11 | jaoi 854 | 1 ⊢ ((𝐴 ∈ 𝑉 ∨ ((𝐴 ↾ 𝐵) ∈ 𝑊 ∧ 𝐵 ∈ 𝑋)) → (𝐴 “ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 844 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 ∪ cuni 4839 ran crn 5590 ↾ cres 5591 “ cima 5592 / cqs 8497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ec 8500 df-qs 8504 |
This theorem is referenced by: ecexALTV 36466 cnvepimaex 36471 |
Copyright terms: Public domain | W3C validator |