![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > imaexALTV | Structured version Visualization version GIF version |
Description: Existence of an image of a class. Theorem 3.17 of [Monk1] p. 39. (cf. imaexg 7909) with weakened antecedent: only the restricion of 𝐴 by a set needs to be a set, not 𝐴 itself, see e.g. cnvepimaex 37509. (Contributed by Peter Mazsa, 22-Feb-2023.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
imaexALTV | ⊢ ((𝐴 ∈ 𝑉 ∨ ((𝐴 ↾ 𝐵) ∈ 𝑊 ∧ 𝐵 ∈ 𝑋)) → (𝐴 “ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imassrn 6070 | . . 3 ⊢ (𝐴 “ 𝐵) ⊆ ran 𝐴 | |
2 | rnexg 7898 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) | |
3 | ssexg 5323 | . . 3 ⊢ (((𝐴 “ 𝐵) ⊆ ran 𝐴 ∧ ran 𝐴 ∈ V) → (𝐴 “ 𝐵) ∈ V) | |
4 | 1, 2, 3 | sylancr 586 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 “ 𝐵) ∈ V) |
5 | qsexg 8772 | . . . . 5 ⊢ (𝐵 ∈ 𝑋 → (𝐵 / 𝐴) ∈ V) | |
6 | uniexg 7733 | . . . . 5 ⊢ ((𝐵 / 𝐴) ∈ V → ∪ (𝐵 / 𝐴) ∈ V) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝐵 ∈ 𝑋 → ∪ (𝐵 / 𝐴) ∈ V) |
8 | uniqsALTV 37502 | . . . . 5 ⊢ ((𝐴 ↾ 𝐵) ∈ 𝑊 → ∪ (𝐵 / 𝐴) = (𝐴 “ 𝐵)) | |
9 | 8 | eleq1d 2817 | . . . 4 ⊢ ((𝐴 ↾ 𝐵) ∈ 𝑊 → (∪ (𝐵 / 𝐴) ∈ V ↔ (𝐴 “ 𝐵) ∈ V)) |
10 | 7, 9 | imbitrid 243 | . . 3 ⊢ ((𝐴 ↾ 𝐵) ∈ 𝑊 → (𝐵 ∈ 𝑋 → (𝐴 “ 𝐵) ∈ V)) |
11 | 10 | imp 406 | . 2 ⊢ (((𝐴 ↾ 𝐵) ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → (𝐴 “ 𝐵) ∈ V) |
12 | 4, 11 | jaoi 854 | 1 ⊢ ((𝐴 ∈ 𝑉 ∨ ((𝐴 ↾ 𝐵) ∈ 𝑊 ∧ 𝐵 ∈ 𝑋)) → (𝐴 “ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 844 ∈ wcel 2105 Vcvv 3473 ⊆ wss 3948 ∪ cuni 4908 ran crn 5677 ↾ cres 5678 “ cima 5679 / cqs 8705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-cnv 5684 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ec 8708 df-qs 8712 |
This theorem is referenced by: ecexALTV 37504 cnvepimaex 37509 |
Copyright terms: Public domain | W3C validator |