Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imaexALTV Structured version   Visualization version   GIF version

Theorem imaexALTV 38278
Description: Existence of an image of a class. Theorem 3.17 of [Monk1] p. 39. (cf. imaexg 7947) with weakened antecedent: only the restriction of 𝐴 by a set needs to be a set, not 𝐴 itself, see e.g. cnvepimaex 38284. (Contributed by Peter Mazsa, 22-Feb-2023.) (Proof modification is discouraged.)
Assertion
Ref Expression
imaexALTV ((𝐴𝑉 ∨ ((𝐴𝐵) ∈ 𝑊𝐵𝑋)) → (𝐴𝐵) ∈ V)

Proof of Theorem imaexALTV
StepHypRef Expression
1 imassrn 6095 . . 3 (𝐴𝐵) ⊆ ran 𝐴
2 rnexg 7936 . . 3 (𝐴𝑉 → ran 𝐴 ∈ V)
3 ssexg 5341 . . 3 (((𝐴𝐵) ⊆ ran 𝐴 ∧ ran 𝐴 ∈ V) → (𝐴𝐵) ∈ V)
41, 2, 3sylancr 586 . 2 (𝐴𝑉 → (𝐴𝐵) ∈ V)
5 qsexg 8827 . . . . 5 (𝐵𝑋 → (𝐵 / 𝐴) ∈ V)
6 uniexg 7769 . . . . 5 ((𝐵 / 𝐴) ∈ V → (𝐵 / 𝐴) ∈ V)
75, 6syl 17 . . . 4 (𝐵𝑋 (𝐵 / 𝐴) ∈ V)
8 uniqsALTV 38277 . . . . 5 ((𝐴𝐵) ∈ 𝑊 (𝐵 / 𝐴) = (𝐴𝐵))
98eleq1d 2829 . . . 4 ((𝐴𝐵) ∈ 𝑊 → ( (𝐵 / 𝐴) ∈ V ↔ (𝐴𝐵) ∈ V))
107, 9imbitrid 244 . . 3 ((𝐴𝐵) ∈ 𝑊 → (𝐵𝑋 → (𝐴𝐵) ∈ V))
1110imp 406 . 2 (((𝐴𝐵) ∈ 𝑊𝐵𝑋) → (𝐴𝐵) ∈ V)
124, 11jaoi 856 1 ((𝐴𝑉 ∨ ((𝐴𝐵) ∈ 𝑊𝐵𝑋)) → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846  wcel 2108  Vcvv 3488  wss 3976   cuni 4931  ran crn 5696  cres 5697  cima 5698   / cqs 8756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7764
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-xp 5701  df-rel 5702  df-cnv 5703  df-dm 5705  df-rn 5706  df-res 5707  df-ima 5708  df-ec 8759  df-qs 8763
This theorem is referenced by:  ecexALTV  38279  cnvepimaex  38284
  Copyright terms: Public domain W3C validator