| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > imaexALTV | Structured version Visualization version GIF version | ||
| Description: Existence of an image of a class. Theorem 3.17 of [Monk1] p. 39. (cf. imaexg 7909) with weakened antecedent: only the restriction of 𝐴 by a set needs to be a set, not 𝐴 itself, see e.g. cnvepimaex 38354. (Contributed by Peter Mazsa, 22-Feb-2023.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| imaexALTV | ⊢ ((𝐴 ∈ 𝑉 ∨ ((𝐴 ↾ 𝐵) ∈ 𝑊 ∧ 𝐵 ∈ 𝑋)) → (𝐴 “ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imassrn 6058 | . . 3 ⊢ (𝐴 “ 𝐵) ⊆ ran 𝐴 | |
| 2 | rnexg 7898 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) | |
| 3 | ssexg 5293 | . . 3 ⊢ (((𝐴 “ 𝐵) ⊆ ran 𝐴 ∧ ran 𝐴 ∈ V) → (𝐴 “ 𝐵) ∈ V) | |
| 4 | 1, 2, 3 | sylancr 587 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 “ 𝐵) ∈ V) |
| 5 | qsexg 8789 | . . . . 5 ⊢ (𝐵 ∈ 𝑋 → (𝐵 / 𝐴) ∈ V) | |
| 6 | uniexg 7734 | . . . . 5 ⊢ ((𝐵 / 𝐴) ∈ V → ∪ (𝐵 / 𝐴) ∈ V) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝐵 ∈ 𝑋 → ∪ (𝐵 / 𝐴) ∈ V) |
| 8 | uniqsALTV 38347 | . . . . 5 ⊢ ((𝐴 ↾ 𝐵) ∈ 𝑊 → ∪ (𝐵 / 𝐴) = (𝐴 “ 𝐵)) | |
| 9 | 8 | eleq1d 2819 | . . . 4 ⊢ ((𝐴 ↾ 𝐵) ∈ 𝑊 → (∪ (𝐵 / 𝐴) ∈ V ↔ (𝐴 “ 𝐵) ∈ V)) |
| 10 | 7, 9 | imbitrid 244 | . . 3 ⊢ ((𝐴 ↾ 𝐵) ∈ 𝑊 → (𝐵 ∈ 𝑋 → (𝐴 “ 𝐵) ∈ V)) |
| 11 | 10 | imp 406 | . 2 ⊢ (((𝐴 ↾ 𝐵) ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → (𝐴 “ 𝐵) ∈ V) |
| 12 | 4, 11 | jaoi 857 | 1 ⊢ ((𝐴 ∈ 𝑉 ∨ ((𝐴 ↾ 𝐵) ∈ 𝑊 ∧ 𝐵 ∈ 𝑋)) → (𝐴 “ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 ∪ cuni 4883 ran crn 5655 ↾ cres 5656 “ cima 5657 / cqs 8718 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ec 8721 df-qs 8725 |
| This theorem is referenced by: ecexALTV 38349 cnvepimaex 38354 |
| Copyright terms: Public domain | W3C validator |