| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > imaexALTV | Structured version Visualization version GIF version | ||
| Description: Existence of an image of a class. Theorem 3.17 of [Monk1] p. 39. (cf. imaexg 7917) with weakened antecedent: only the restriction of 𝐴 by a set needs to be a set, not 𝐴 itself, see e.g. cnvepimaex 38312. (Contributed by Peter Mazsa, 22-Feb-2023.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| imaexALTV | ⊢ ((𝐴 ∈ 𝑉 ∨ ((𝐴 ↾ 𝐵) ∈ 𝑊 ∧ 𝐵 ∈ 𝑋)) → (𝐴 “ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imassrn 6069 | . . 3 ⊢ (𝐴 “ 𝐵) ⊆ ran 𝐴 | |
| 2 | rnexg 7906 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) | |
| 3 | ssexg 5303 | . . 3 ⊢ (((𝐴 “ 𝐵) ⊆ ran 𝐴 ∧ ran 𝐴 ∈ V) → (𝐴 “ 𝐵) ∈ V) | |
| 4 | 1, 2, 3 | sylancr 587 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 “ 𝐵) ∈ V) |
| 5 | qsexg 8797 | . . . . 5 ⊢ (𝐵 ∈ 𝑋 → (𝐵 / 𝐴) ∈ V) | |
| 6 | uniexg 7742 | . . . . 5 ⊢ ((𝐵 / 𝐴) ∈ V → ∪ (𝐵 / 𝐴) ∈ V) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝐵 ∈ 𝑋 → ∪ (𝐵 / 𝐴) ∈ V) |
| 8 | uniqsALTV 38305 | . . . . 5 ⊢ ((𝐴 ↾ 𝐵) ∈ 𝑊 → ∪ (𝐵 / 𝐴) = (𝐴 “ 𝐵)) | |
| 9 | 8 | eleq1d 2818 | . . . 4 ⊢ ((𝐴 ↾ 𝐵) ∈ 𝑊 → (∪ (𝐵 / 𝐴) ∈ V ↔ (𝐴 “ 𝐵) ∈ V)) |
| 10 | 7, 9 | imbitrid 244 | . . 3 ⊢ ((𝐴 ↾ 𝐵) ∈ 𝑊 → (𝐵 ∈ 𝑋 → (𝐴 “ 𝐵) ∈ V)) |
| 11 | 10 | imp 406 | . 2 ⊢ (((𝐴 ↾ 𝐵) ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → (𝐴 “ 𝐵) ∈ V) |
| 12 | 4, 11 | jaoi 857 | 1 ⊢ ((𝐴 ∈ 𝑉 ∨ ((𝐴 ↾ 𝐵) ∈ 𝑊 ∧ 𝐵 ∈ 𝑋)) → (𝐴 “ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∈ wcel 2107 Vcvv 3463 ⊆ wss 3931 ∪ cuni 4887 ran crn 5666 ↾ cres 5667 “ cima 5668 / cqs 8726 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-xp 5671 df-rel 5672 df-cnv 5673 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-ec 8729 df-qs 8733 |
| This theorem is referenced by: ecexALTV 38307 cnvepimaex 38312 |
| Copyright terms: Public domain | W3C validator |