Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imaexALTV Structured version   Visualization version   GIF version

Theorem imaexALTV 38306
Description: Existence of an image of a class. Theorem 3.17 of [Monk1] p. 39. (cf. imaexg 7917) with weakened antecedent: only the restriction of 𝐴 by a set needs to be a set, not 𝐴 itself, see e.g. cnvepimaex 38312. (Contributed by Peter Mazsa, 22-Feb-2023.) (Proof modification is discouraged.)
Assertion
Ref Expression
imaexALTV ((𝐴𝑉 ∨ ((𝐴𝐵) ∈ 𝑊𝐵𝑋)) → (𝐴𝐵) ∈ V)

Proof of Theorem imaexALTV
StepHypRef Expression
1 imassrn 6069 . . 3 (𝐴𝐵) ⊆ ran 𝐴
2 rnexg 7906 . . 3 (𝐴𝑉 → ran 𝐴 ∈ V)
3 ssexg 5303 . . 3 (((𝐴𝐵) ⊆ ran 𝐴 ∧ ran 𝐴 ∈ V) → (𝐴𝐵) ∈ V)
41, 2, 3sylancr 587 . 2 (𝐴𝑉 → (𝐴𝐵) ∈ V)
5 qsexg 8797 . . . . 5 (𝐵𝑋 → (𝐵 / 𝐴) ∈ V)
6 uniexg 7742 . . . . 5 ((𝐵 / 𝐴) ∈ V → (𝐵 / 𝐴) ∈ V)
75, 6syl 17 . . . 4 (𝐵𝑋 (𝐵 / 𝐴) ∈ V)
8 uniqsALTV 38305 . . . . 5 ((𝐴𝐵) ∈ 𝑊 (𝐵 / 𝐴) = (𝐴𝐵))
98eleq1d 2818 . . . 4 ((𝐴𝐵) ∈ 𝑊 → ( (𝐵 / 𝐴) ∈ V ↔ (𝐴𝐵) ∈ V))
107, 9imbitrid 244 . . 3 ((𝐴𝐵) ∈ 𝑊 → (𝐵𝑋 → (𝐴𝐵) ∈ V))
1110imp 406 . 2 (((𝐴𝐵) ∈ 𝑊𝐵𝑋) → (𝐴𝐵) ∈ V)
124, 11jaoi 857 1 ((𝐴𝑉 ∨ ((𝐴𝐵) ∈ 𝑊𝐵𝑋)) → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  wcel 2107  Vcvv 3463  wss 3931   cuni 4887  ran crn 5666  cres 5667  cima 5668   / cqs 8726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-xp 5671  df-rel 5672  df-cnv 5673  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-ec 8729  df-qs 8733
This theorem is referenced by:  ecexALTV  38307  cnvepimaex  38312
  Copyright terms: Public domain W3C validator