Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imaexALTV Structured version   Visualization version   GIF version

Theorem imaexALTV 37503
Description: Existence of an image of a class. Theorem 3.17 of [Monk1] p. 39. (cf. imaexg 7909) with weakened antecedent: only the restricion of 𝐴 by a set needs to be a set, not 𝐴 itself, see e.g. cnvepimaex 37509. (Contributed by Peter Mazsa, 22-Feb-2023.) (Proof modification is discouraged.)
Assertion
Ref Expression
imaexALTV ((𝐴𝑉 ∨ ((𝐴𝐵) ∈ 𝑊𝐵𝑋)) → (𝐴𝐵) ∈ V)

Proof of Theorem imaexALTV
StepHypRef Expression
1 imassrn 6070 . . 3 (𝐴𝐵) ⊆ ran 𝐴
2 rnexg 7898 . . 3 (𝐴𝑉 → ran 𝐴 ∈ V)
3 ssexg 5323 . . 3 (((𝐴𝐵) ⊆ ran 𝐴 ∧ ran 𝐴 ∈ V) → (𝐴𝐵) ∈ V)
41, 2, 3sylancr 586 . 2 (𝐴𝑉 → (𝐴𝐵) ∈ V)
5 qsexg 8772 . . . . 5 (𝐵𝑋 → (𝐵 / 𝐴) ∈ V)
6 uniexg 7733 . . . . 5 ((𝐵 / 𝐴) ∈ V → (𝐵 / 𝐴) ∈ V)
75, 6syl 17 . . . 4 (𝐵𝑋 (𝐵 / 𝐴) ∈ V)
8 uniqsALTV 37502 . . . . 5 ((𝐴𝐵) ∈ 𝑊 (𝐵 / 𝐴) = (𝐴𝐵))
98eleq1d 2817 . . . 4 ((𝐴𝐵) ∈ 𝑊 → ( (𝐵 / 𝐴) ∈ V ↔ (𝐴𝐵) ∈ V))
107, 9imbitrid 243 . . 3 ((𝐴𝐵) ∈ 𝑊 → (𝐵𝑋 → (𝐴𝐵) ∈ V))
1110imp 406 . 2 (((𝐴𝐵) ∈ 𝑊𝐵𝑋) → (𝐴𝐵) ∈ V)
124, 11jaoi 854 1 ((𝐴𝑉 ∨ ((𝐴𝐵) ∈ 𝑊𝐵𝑋)) → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 844  wcel 2105  Vcvv 3473  wss 3948   cuni 4908  ran crn 5677  cres 5678  cima 5679   / cqs 8705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-cnv 5684  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ec 8708  df-qs 8712
This theorem is referenced by:  ecexALTV  37504  cnvepimaex  37509
  Copyright terms: Public domain W3C validator