MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.12 Structured version   Visualization version   GIF version

Theorem r19.12 3288
Description: Restricted quantifier version of 19.12 2326. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) Avoid ax-13 2370, ax-ext 2701. (Revised by Wolf Lammen, 17-Jun-2023.) (Proof shortened by Wolf Lammen, 4-Nov-2024.)
Assertion
Ref Expression
r19.12 (∃𝑥𝐴𝑦𝐵 𝜑 → ∀𝑦𝐵𝑥𝐴 𝜑)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem r19.12
StepHypRef Expression
1 df-rex 3054 . . 3 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥(𝑥𝐴 ∧ ∀𝑦𝐵 𝜑))
2 nfv 1914 . . . . 5 𝑦 𝑥𝐴
3 nfra1 3261 . . . . 5 𝑦𝑦𝐵 𝜑
42, 3nfan 1899 . . . 4 𝑦(𝑥𝐴 ∧ ∀𝑦𝐵 𝜑)
54nfex 2323 . . 3 𝑦𝑥(𝑥𝐴 ∧ ∀𝑦𝐵 𝜑)
61, 5nfxfr 1853 . 2 𝑦𝑥𝐴𝑦𝐵 𝜑
7 rsp 3225 . . . . 5 (∀𝑦𝐵 𝜑 → (𝑦𝐵𝜑))
87com12 32 . . . 4 (𝑦𝐵 → (∀𝑦𝐵 𝜑𝜑))
98reximdv 3148 . . 3 (𝑦𝐵 → (∃𝑥𝐴𝑦𝐵 𝜑 → ∃𝑥𝐴 𝜑))
109com12 32 . 2 (∃𝑥𝐴𝑦𝐵 𝜑 → (𝑦𝐵 → ∃𝑥𝐴 𝜑))
116, 10ralrimi 3235 1 (∃𝑥𝐴𝑦𝐵 𝜑 → ∀𝑦𝐵𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1779  wcel 2109  wral 3044  wrex 3053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-10 2142  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-ral 3045  df-rex 3054
This theorem is referenced by:  iuniin  4968  ucncn  24172  ftc1a  25944  heicant  37649  rngoid  37896  rngmgmbs4  37925  intimass  43643  intimag  43645
  Copyright terms: Public domain W3C validator