| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.12 | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of 19.12 2327. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) Avoid ax-13 2377, ax-ext 2708. (Revised by Wolf Lammen, 17-Jun-2023.) (Proof shortened by Wolf Lammen, 4-Nov-2024.) |
| Ref | Expression |
|---|---|
| r19.12 | ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 3071 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐵 𝜑)) | |
| 2 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑦 𝑥 ∈ 𝐴 | |
| 3 | nfra1 3284 | . . . . 5 ⊢ Ⅎ𝑦∀𝑦 ∈ 𝐵 𝜑 | |
| 4 | 2, 3 | nfan 1899 | . . . 4 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐵 𝜑) |
| 5 | 4 | nfex 2324 | . . 3 ⊢ Ⅎ𝑦∃𝑥(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐵 𝜑) |
| 6 | 1, 5 | nfxfr 1853 | . 2 ⊢ Ⅎ𝑦∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| 7 | rsp 3247 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐵 𝜑 → (𝑦 ∈ 𝐵 → 𝜑)) | |
| 8 | 7 | com12 32 | . . . 4 ⊢ (𝑦 ∈ 𝐵 → (∀𝑦 ∈ 𝐵 𝜑 → 𝜑)) |
| 9 | 8 | reximdv 3170 | . . 3 ⊢ (𝑦 ∈ 𝐵 → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∃𝑥 ∈ 𝐴 𝜑)) |
| 10 | 9 | com12 32 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → (𝑦 ∈ 𝐵 → ∃𝑥 ∈ 𝐴 𝜑)) |
| 11 | 6, 10 | ralrimi 3257 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-ral 3062 df-rex 3071 |
| This theorem is referenced by: iuniin 5004 ucncn 24294 ftc1a 26078 heicant 37662 rngoid 37909 rngmgmbs4 37938 intimass 43667 intimag 43669 |
| Copyright terms: Public domain | W3C validator |