Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ishlat3N Structured version   Visualization version   GIF version

Theorem ishlat3N 39340
Description: The predicate "is a Hilbert lattice". Note that the superposition principle is expressed in the compact form 𝑧𝐴(𝑥 𝑧) = (𝑦 𝑧). The exchange property and atomicity are provided by 𝐾 ∈ CvLat, and "minimum height 4" is shown explicitly. (Contributed by NM, 8-Nov-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
ishlat.b 𝐵 = (Base‘𝐾)
ishlat.l = (le‘𝐾)
ishlat.s < = (lt‘𝐾)
ishlat.j = (join‘𝐾)
ishlat.z 0 = (0.‘𝐾)
ishlat.u 1 = (1.‘𝐾)
ishlat.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
ishlat3N (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥 𝑧) = (𝑦 𝑧) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐾,𝑦,𝑧
Allowed substitution hints:   < (𝑥,𝑦,𝑧)   1 (𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)   0 (𝑥,𝑦,𝑧)

Proof of Theorem ishlat3N
StepHypRef Expression
1 ishlat.b . . 3 𝐵 = (Base‘𝐾)
2 ishlat.l . . 3 = (le‘𝐾)
3 ishlat.s . . 3 < = (lt‘𝐾)
4 ishlat.j . . 3 = (join‘𝐾)
5 ishlat.z . . 3 0 = (0.‘𝐾)
6 ishlat.u . . 3 1 = (1.‘𝐾)
7 ishlat.a . . 3 𝐴 = (Atoms‘𝐾)
81, 2, 3, 4, 5, 6, 7ishlat1 39338 . 2 (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
9 simpll3 1215 . . . . . . . 8 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → 𝐾 ∈ CvLat)
10 simplrl 776 . . . . . . . 8 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → 𝑥𝐴)
11 simplrr 777 . . . . . . . 8 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → 𝑦𝐴)
12 simpr 484 . . . . . . . 8 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → 𝑧𝐴)
137, 2, 4cvlsupr3 39330 . . . . . . . 8 ((𝐾 ∈ CvLat ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥 𝑧) = (𝑦 𝑧) ↔ (𝑥𝑦 → (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦)))))
149, 10, 11, 12, 13syl13anc 1374 . . . . . . 7 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → ((𝑥 𝑧) = (𝑦 𝑧) ↔ (𝑥𝑦 → (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦)))))
1514rexbidva 3155 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (𝑥𝐴𝑦𝐴)) → (∃𝑧𝐴 (𝑥 𝑧) = (𝑦 𝑧) ↔ ∃𝑧𝐴 (𝑥𝑦 → (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦)))))
16 ne0i 4300 . . . . . . . 8 (𝑥𝐴𝐴 ≠ ∅)
1716ad2antrl 728 . . . . . . 7 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (𝑥𝐴𝑦𝐴)) → 𝐴 ≠ ∅)
18 r19.37zv 4461 . . . . . . 7 (𝐴 ≠ ∅ → (∃𝑧𝐴 (𝑥𝑦 → (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ↔ (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦)))))
1917, 18syl 17 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (𝑥𝐴𝑦𝐴)) → (∃𝑧𝐴 (𝑥𝑦 → (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ↔ (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦)))))
2015, 19bitr2d 280 . . . . 5 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ↔ ∃𝑧𝐴 (𝑥 𝑧) = (𝑦 𝑧)))
21202ralbidva 3197 . . . 4 ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥 𝑧) = (𝑦 𝑧)))
2221anbi1d 631 . . 3 ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) → ((∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 ))) ↔ (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥 𝑧) = (𝑦 𝑧) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
2322pm5.32i 574 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))) ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥 𝑧) = (𝑦 𝑧) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
248, 23bitri 275 1 (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥 𝑧) = (𝑦 𝑧) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  c0 4292   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  ltcplt 18249  joincjn 18252  0.cp0 18362  1.cp1 18363  CLatccla 18439  OMLcoml 39161  Atomscatm 39249  CvLatclc 39251  HLchlt 39336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-proset 18235  df-poset 18254  df-plt 18269  df-lub 18285  df-glb 18286  df-join 18287  df-meet 18288  df-p0 18364  df-lat 18373  df-covers 39252  df-ats 39253  df-atl 39284  df-cvlat 39308  df-hlat 39337
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator