Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ishlat3N Structured version   Visualization version   GIF version

Theorem ishlat3N 39354
Description: The predicate "is a Hilbert lattice". Note that the superposition principle is expressed in the compact form 𝑧𝐴(𝑥 𝑧) = (𝑦 𝑧). The exchange property and atomicity are provided by 𝐾 ∈ CvLat, and "minimum height 4" is shown explicitly. (Contributed by NM, 8-Nov-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
ishlat.b 𝐵 = (Base‘𝐾)
ishlat.l = (le‘𝐾)
ishlat.s < = (lt‘𝐾)
ishlat.j = (join‘𝐾)
ishlat.z 0 = (0.‘𝐾)
ishlat.u 1 = (1.‘𝐾)
ishlat.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
ishlat3N (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥 𝑧) = (𝑦 𝑧) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐾,𝑦,𝑧
Allowed substitution hints:   < (𝑥,𝑦,𝑧)   1 (𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)   0 (𝑥,𝑦,𝑧)

Proof of Theorem ishlat3N
StepHypRef Expression
1 ishlat.b . . 3 𝐵 = (Base‘𝐾)
2 ishlat.l . . 3 = (le‘𝐾)
3 ishlat.s . . 3 < = (lt‘𝐾)
4 ishlat.j . . 3 = (join‘𝐾)
5 ishlat.z . . 3 0 = (0.‘𝐾)
6 ishlat.u . . 3 1 = (1.‘𝐾)
7 ishlat.a . . 3 𝐴 = (Atoms‘𝐾)
81, 2, 3, 4, 5, 6, 7ishlat1 39352 . 2 (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
9 simpll3 1215 . . . . . . . 8 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → 𝐾 ∈ CvLat)
10 simplrl 776 . . . . . . . 8 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → 𝑥𝐴)
11 simplrr 777 . . . . . . . 8 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → 𝑦𝐴)
12 simpr 484 . . . . . . . 8 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → 𝑧𝐴)
137, 2, 4cvlsupr3 39344 . . . . . . . 8 ((𝐾 ∈ CvLat ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥 𝑧) = (𝑦 𝑧) ↔ (𝑥𝑦 → (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦)))))
149, 10, 11, 12, 13syl13anc 1374 . . . . . . 7 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → ((𝑥 𝑧) = (𝑦 𝑧) ↔ (𝑥𝑦 → (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦)))))
1514rexbidva 3156 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (𝑥𝐴𝑦𝐴)) → (∃𝑧𝐴 (𝑥 𝑧) = (𝑦 𝑧) ↔ ∃𝑧𝐴 (𝑥𝑦 → (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦)))))
16 ne0i 4307 . . . . . . . 8 (𝑥𝐴𝐴 ≠ ∅)
1716ad2antrl 728 . . . . . . 7 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (𝑥𝐴𝑦𝐴)) → 𝐴 ≠ ∅)
18 r19.37zv 4468 . . . . . . 7 (𝐴 ≠ ∅ → (∃𝑧𝐴 (𝑥𝑦 → (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ↔ (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦)))))
1917, 18syl 17 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (𝑥𝐴𝑦𝐴)) → (∃𝑧𝐴 (𝑥𝑦 → (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ↔ (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦)))))
2015, 19bitr2d 280 . . . . 5 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ↔ ∃𝑧𝐴 (𝑥 𝑧) = (𝑦 𝑧)))
21202ralbidva 3200 . . . 4 ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥 𝑧) = (𝑦 𝑧)))
2221anbi1d 631 . . 3 ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) → ((∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 ))) ↔ (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥 𝑧) = (𝑦 𝑧) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
2322pm5.32i 574 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))) ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥 𝑧) = (𝑦 𝑧) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
248, 23bitri 275 1 (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥 𝑧) = (𝑦 𝑧) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  c0 4299   class class class wbr 5110  cfv 6514  (class class class)co 7390  Basecbs 17186  lecple 17234  ltcplt 18276  joincjn 18279  0.cp0 18389  1.cp1 18390  CLatccla 18464  OMLcoml 39175  Atomscatm 39263  CvLatclc 39265  HLchlt 39350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-lat 18398  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator