Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ishlat3N Structured version   Visualization version   GIF version

Theorem ishlat3N 38854
Description: The predicate "is a Hilbert lattice". Note that the superposition principle is expressed in the compact form βˆƒπ‘§ ∈ 𝐴(π‘₯ ∨ 𝑧) = (𝑦 ∨ 𝑧). The exchange property and atomicity are provided by 𝐾 ∈ CvLat, and "minimum height 4" is shown explicitly. (Contributed by NM, 8-Nov-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
ishlat.b 𝐡 = (Baseβ€˜πΎ)
ishlat.l ≀ = (leβ€˜πΎ)
ishlat.s < = (ltβ€˜πΎ)
ishlat.j ∨ = (joinβ€˜πΎ)
ishlat.z 0 = (0.β€˜πΎ)
ishlat.u 1 = (1.β€˜πΎ)
ishlat.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
ishlat3N (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 βˆƒπ‘§ ∈ 𝐴 (π‘₯ ∨ 𝑧) = (𝑦 ∨ 𝑧) ∧ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ 𝐡 βˆƒπ‘§ ∈ 𝐡 (( 0 < π‘₯ ∧ π‘₯ < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 )))))
Distinct variable groups:   π‘₯,𝑦,𝑧,𝐴   π‘₯,𝐡,𝑦,𝑧   π‘₯,𝐾,𝑦,𝑧
Allowed substitution hints:   < (π‘₯,𝑦,𝑧)   1 (π‘₯,𝑦,𝑧)   ∨ (π‘₯,𝑦,𝑧)   ≀ (π‘₯,𝑦,𝑧)   0 (π‘₯,𝑦,𝑧)

Proof of Theorem ishlat3N
StepHypRef Expression
1 ishlat.b . . 3 𝐡 = (Baseβ€˜πΎ)
2 ishlat.l . . 3 ≀ = (leβ€˜πΎ)
3 ishlat.s . . 3 < = (ltβ€˜πΎ)
4 ishlat.j . . 3 ∨ = (joinβ€˜πΎ)
5 ishlat.z . . 3 0 = (0.β€˜πΎ)
6 ishlat.u . . 3 1 = (1.β€˜πΎ)
7 ishlat.a . . 3 𝐴 = (Atomsβ€˜πΎ)
81, 2, 3, 4, 5, 6, 7ishlat1 38852 . 2 (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦))) ∧ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ 𝐡 βˆƒπ‘§ ∈ 𝐡 (( 0 < π‘₯ ∧ π‘₯ < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 )))))
9 simpll3 1211 . . . . . . . 8 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑧 ∈ 𝐴) β†’ 𝐾 ∈ CvLat)
10 simplrl 775 . . . . . . . 8 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑧 ∈ 𝐴) β†’ π‘₯ ∈ 𝐴)
11 simplrr 776 . . . . . . . 8 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑧 ∈ 𝐴) β†’ 𝑦 ∈ 𝐴)
12 simpr 483 . . . . . . . 8 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑧 ∈ 𝐴) β†’ 𝑧 ∈ 𝐴)
137, 2, 4cvlsupr3 38844 . . . . . . . 8 ((𝐾 ∈ CvLat ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) β†’ ((π‘₯ ∨ 𝑧) = (𝑦 ∨ 𝑧) ↔ (π‘₯ β‰  𝑦 β†’ (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦)))))
149, 10, 11, 12, 13syl13anc 1369 . . . . . . 7 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑧 ∈ 𝐴) β†’ ((π‘₯ ∨ 𝑧) = (𝑦 ∨ 𝑧) ↔ (π‘₯ β‰  𝑦 β†’ (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦)))))
1514rexbidva 3167 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) β†’ (βˆƒπ‘§ ∈ 𝐴 (π‘₯ ∨ 𝑧) = (𝑦 ∨ 𝑧) ↔ βˆƒπ‘§ ∈ 𝐴 (π‘₯ β‰  𝑦 β†’ (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦)))))
16 ne0i 4328 . . . . . . . 8 (π‘₯ ∈ 𝐴 β†’ 𝐴 β‰  βˆ…)
1716ad2antrl 726 . . . . . . 7 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) β†’ 𝐴 β‰  βˆ…)
18 r19.37zv 4495 . . . . . . 7 (𝐴 β‰  βˆ… β†’ (βˆƒπ‘§ ∈ 𝐴 (π‘₯ β‰  𝑦 β†’ (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦))) ↔ (π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦)))))
1917, 18syl 17 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) β†’ (βˆƒπ‘§ ∈ 𝐴 (π‘₯ β‰  𝑦 β†’ (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦))) ↔ (π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦)))))
2015, 19bitr2d 279 . . . . 5 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) β†’ ((π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦))) ↔ βˆƒπ‘§ ∈ 𝐴 (π‘₯ ∨ 𝑧) = (𝑦 ∨ 𝑧)))
21202ralbidva 3207 . . . 4 ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) β†’ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦))) ↔ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 βˆƒπ‘§ ∈ 𝐴 (π‘₯ ∨ 𝑧) = (𝑦 ∨ 𝑧)))
2221anbi1d 629 . . 3 ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) β†’ ((βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦))) ∧ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ 𝐡 βˆƒπ‘§ ∈ 𝐡 (( 0 < π‘₯ ∧ π‘₯ < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))) ↔ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 βˆƒπ‘§ ∈ 𝐴 (π‘₯ ∨ 𝑧) = (𝑦 ∨ 𝑧) ∧ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ 𝐡 βˆƒπ‘§ ∈ 𝐡 (( 0 < π‘₯ ∧ π‘₯ < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 )))))
2322pm5.32i 573 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦))) ∧ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ 𝐡 βˆƒπ‘§ ∈ 𝐡 (( 0 < π‘₯ ∧ π‘₯ < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 )))) ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 βˆƒπ‘§ ∈ 𝐴 (π‘₯ ∨ 𝑧) = (𝑦 ∨ 𝑧) ∧ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ 𝐡 βˆƒπ‘§ ∈ 𝐡 (( 0 < π‘₯ ∧ π‘₯ < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 )))))
248, 23bitri 274 1 (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 βˆƒπ‘§ ∈ 𝐴 (π‘₯ ∨ 𝑧) = (𝑦 ∨ 𝑧) ∧ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ 𝐡 βˆƒπ‘§ ∈ 𝐡 (( 0 < π‘₯ ∧ π‘₯ < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 )))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2930  βˆ€wral 3051  βˆƒwrex 3060  βˆ…c0 4316   class class class wbr 5141  β€˜cfv 6541  (class class class)co 7414  Basecbs 17177  lecple 17237  ltcplt 18297  joincjn 18300  0.cp0 18412  1.cp1 18413  CLatccla 18487  OMLcoml 38675  Atomscatm 38763  CvLatclc 38765  HLchlt 38850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5357  ax-pr 5421  ax-un 7736
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4317  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5568  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7417  df-oprab 7418  df-proset 18284  df-poset 18302  df-plt 18319  df-lub 18335  df-glb 18336  df-join 18337  df-meet 18338  df-p0 18414  df-lat 18421  df-covers 38766  df-ats 38767  df-atl 38798  df-cvlat 38822  df-hlat 38851
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator