Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ishlat3N Structured version   Visualization version   GIF version

Theorem ishlat3N 38212
Description: The predicate "is a Hilbert lattice". Note that the superposition principle is expressed in the compact form βˆƒπ‘§ ∈ 𝐴(π‘₯ ∨ 𝑧) = (𝑦 ∨ 𝑧). The exchange property and atomicity are provided by 𝐾 ∈ CvLat, and "minimum height 4" is shown explicitly. (Contributed by NM, 8-Nov-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
ishlat.b 𝐡 = (Baseβ€˜πΎ)
ishlat.l ≀ = (leβ€˜πΎ)
ishlat.s < = (ltβ€˜πΎ)
ishlat.j ∨ = (joinβ€˜πΎ)
ishlat.z 0 = (0.β€˜πΎ)
ishlat.u 1 = (1.β€˜πΎ)
ishlat.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
ishlat3N (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 βˆƒπ‘§ ∈ 𝐴 (π‘₯ ∨ 𝑧) = (𝑦 ∨ 𝑧) ∧ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ 𝐡 βˆƒπ‘§ ∈ 𝐡 (( 0 < π‘₯ ∧ π‘₯ < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 )))))
Distinct variable groups:   π‘₯,𝑦,𝑧,𝐴   π‘₯,𝐡,𝑦,𝑧   π‘₯,𝐾,𝑦,𝑧
Allowed substitution hints:   < (π‘₯,𝑦,𝑧)   1 (π‘₯,𝑦,𝑧)   ∨ (π‘₯,𝑦,𝑧)   ≀ (π‘₯,𝑦,𝑧)   0 (π‘₯,𝑦,𝑧)

Proof of Theorem ishlat3N
StepHypRef Expression
1 ishlat.b . . 3 𝐡 = (Baseβ€˜πΎ)
2 ishlat.l . . 3 ≀ = (leβ€˜πΎ)
3 ishlat.s . . 3 < = (ltβ€˜πΎ)
4 ishlat.j . . 3 ∨ = (joinβ€˜πΎ)
5 ishlat.z . . 3 0 = (0.β€˜πΎ)
6 ishlat.u . . 3 1 = (1.β€˜πΎ)
7 ishlat.a . . 3 𝐴 = (Atomsβ€˜πΎ)
81, 2, 3, 4, 5, 6, 7ishlat1 38210 . 2 (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦))) ∧ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ 𝐡 βˆƒπ‘§ ∈ 𝐡 (( 0 < π‘₯ ∧ π‘₯ < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 )))))
9 simpll3 1214 . . . . . . . 8 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑧 ∈ 𝐴) β†’ 𝐾 ∈ CvLat)
10 simplrl 775 . . . . . . . 8 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑧 ∈ 𝐴) β†’ π‘₯ ∈ 𝐴)
11 simplrr 776 . . . . . . . 8 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑧 ∈ 𝐴) β†’ 𝑦 ∈ 𝐴)
12 simpr 485 . . . . . . . 8 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑧 ∈ 𝐴) β†’ 𝑧 ∈ 𝐴)
137, 2, 4cvlsupr3 38202 . . . . . . . 8 ((𝐾 ∈ CvLat ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) β†’ ((π‘₯ ∨ 𝑧) = (𝑦 ∨ 𝑧) ↔ (π‘₯ β‰  𝑦 β†’ (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦)))))
149, 10, 11, 12, 13syl13anc 1372 . . . . . . 7 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑧 ∈ 𝐴) β†’ ((π‘₯ ∨ 𝑧) = (𝑦 ∨ 𝑧) ↔ (π‘₯ β‰  𝑦 β†’ (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦)))))
1514rexbidva 3176 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) β†’ (βˆƒπ‘§ ∈ 𝐴 (π‘₯ ∨ 𝑧) = (𝑦 ∨ 𝑧) ↔ βˆƒπ‘§ ∈ 𝐴 (π‘₯ β‰  𝑦 β†’ (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦)))))
16 ne0i 4333 . . . . . . . 8 (π‘₯ ∈ 𝐴 β†’ 𝐴 β‰  βˆ…)
1716ad2antrl 726 . . . . . . 7 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) β†’ 𝐴 β‰  βˆ…)
18 r19.37zv 4500 . . . . . . 7 (𝐴 β‰  βˆ… β†’ (βˆƒπ‘§ ∈ 𝐴 (π‘₯ β‰  𝑦 β†’ (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦))) ↔ (π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦)))))
1917, 18syl 17 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) β†’ (βˆƒπ‘§ ∈ 𝐴 (π‘₯ β‰  𝑦 β†’ (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦))) ↔ (π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦)))))
2015, 19bitr2d 279 . . . . 5 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) β†’ ((π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦))) ↔ βˆƒπ‘§ ∈ 𝐴 (π‘₯ ∨ 𝑧) = (𝑦 ∨ 𝑧)))
21202ralbidva 3216 . . . 4 ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) β†’ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦))) ↔ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 βˆƒπ‘§ ∈ 𝐴 (π‘₯ ∨ 𝑧) = (𝑦 ∨ 𝑧)))
2221anbi1d 630 . . 3 ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) β†’ ((βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦))) ∧ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ 𝐡 βˆƒπ‘§ ∈ 𝐡 (( 0 < π‘₯ ∧ π‘₯ < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))) ↔ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 βˆƒπ‘§ ∈ 𝐴 (π‘₯ ∨ 𝑧) = (𝑦 ∨ 𝑧) ∧ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ 𝐡 βˆƒπ‘§ ∈ 𝐡 (( 0 < π‘₯ ∧ π‘₯ < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 )))))
2322pm5.32i 575 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦))) ∧ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ 𝐡 βˆƒπ‘§ ∈ 𝐡 (( 0 < π‘₯ ∧ π‘₯ < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 )))) ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 βˆƒπ‘§ ∈ 𝐴 (π‘₯ ∨ 𝑧) = (𝑦 ∨ 𝑧) ∧ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ 𝐡 βˆƒπ‘§ ∈ 𝐡 (( 0 < π‘₯ ∧ π‘₯ < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 )))))
248, 23bitri 274 1 (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 βˆƒπ‘§ ∈ 𝐴 (π‘₯ ∨ 𝑧) = (𝑦 ∨ 𝑧) ∧ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ 𝐡 βˆƒπ‘§ ∈ 𝐡 (( 0 < π‘₯ ∧ π‘₯ < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 )))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  βˆƒwrex 3070  βˆ…c0 4321   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  lecple 17200  ltcplt 18257  joincjn 18260  0.cp0 18372  1.cp1 18373  CLatccla 18447  OMLcoml 38033  Atomscatm 38121  CvLatclc 38123  HLchlt 38208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-lat 18381  df-covers 38124  df-ats 38125  df-atl 38156  df-cvlat 38180  df-hlat 38209
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator