Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlsupr2 Structured version   Visualization version   GIF version

Theorem hlsupr2 39369
Description: A Hilbert lattice has the superposition property. (Contributed by NM, 25-Nov-2012.)
Hypotheses
Ref Expression
hlsupr2.j = (join‘𝐾)
hlsupr2.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
hlsupr2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ∃𝑟𝐴 (𝑃 𝑟) = (𝑄 𝑟))
Distinct variable groups:   𝐴,𝑟   𝐾,𝑟   𝑃,𝑟   𝑄,𝑟
Allowed substitution hint:   (𝑟)

Proof of Theorem hlsupr2
StepHypRef Expression
1 eqid 2729 . . . 4 (le‘𝐾) = (le‘𝐾)
2 hlsupr2.j . . . 4 = (join‘𝐾)
3 hlsupr2.a . . . 4 𝐴 = (Atoms‘𝐾)
41, 2, 3hlsupr 39368 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → ∃𝑟𝐴 (𝑟𝑃𝑟𝑄𝑟(le‘𝐾)(𝑃 𝑄)))
54ex 412 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝑄 → ∃𝑟𝐴 (𝑟𝑃𝑟𝑄𝑟(le‘𝐾)(𝑃 𝑄))))
6 simpl1 1192 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝐾 ∈ HL)
7 hlcvl 39340 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ CvLat)
86, 7syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝐾 ∈ CvLat)
9 simpl2 1193 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑃𝐴)
10 simpl3 1194 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑄𝐴)
11 simpr 484 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑟𝐴)
123, 1, 2cvlsupr3 39325 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑟𝐴)) → ((𝑃 𝑟) = (𝑄 𝑟) ↔ (𝑃𝑄 → (𝑟𝑃𝑟𝑄𝑟(le‘𝐾)(𝑃 𝑄)))))
138, 9, 10, 11, 12syl13anc 1374 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → ((𝑃 𝑟) = (𝑄 𝑟) ↔ (𝑃𝑄 → (𝑟𝑃𝑟𝑄𝑟(le‘𝐾)(𝑃 𝑄)))))
1413rexbidva 3151 . . 3 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (∃𝑟𝐴 (𝑃 𝑟) = (𝑄 𝑟) ↔ ∃𝑟𝐴 (𝑃𝑄 → (𝑟𝑃𝑟𝑄𝑟(le‘𝐾)(𝑃 𝑄)))))
15 ne0i 4294 . . . . 5 (𝑃𝐴𝐴 ≠ ∅)
16153ad2ant2 1134 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝐴 ≠ ∅)
17 r19.37zv 4455 . . . 4 (𝐴 ≠ ∅ → (∃𝑟𝐴 (𝑃𝑄 → (𝑟𝑃𝑟𝑄𝑟(le‘𝐾)(𝑃 𝑄))) ↔ (𝑃𝑄 → ∃𝑟𝐴 (𝑟𝑃𝑟𝑄𝑟(le‘𝐾)(𝑃 𝑄)))))
1816, 17syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (∃𝑟𝐴 (𝑃𝑄 → (𝑟𝑃𝑟𝑄𝑟(le‘𝐾)(𝑃 𝑄))) ↔ (𝑃𝑄 → ∃𝑟𝐴 (𝑟𝑃𝑟𝑄𝑟(le‘𝐾)(𝑃 𝑄)))))
1914, 18bitrd 279 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (∃𝑟𝐴 (𝑃 𝑟) = (𝑄 𝑟) ↔ (𝑃𝑄 → ∃𝑟𝐴 (𝑟𝑃𝑟𝑄𝑟(le‘𝐾)(𝑃 𝑄)))))
205, 19mpbird 257 1 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ∃𝑟𝐴 (𝑃 𝑟) = (𝑄 𝑟))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  c0 4286   class class class wbr 5095  cfv 6486  (class class class)co 7353  lecple 17186  joincjn 18235  Atomscatm 39244  CvLatclc 39246  HLchlt 39331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-proset 18218  df-poset 18237  df-plt 18252  df-lub 18268  df-glb 18269  df-join 18270  df-meet 18271  df-p0 18347  df-lat 18356  df-covers 39247  df-ats 39248  df-atl 39279  df-cvlat 39303  df-hlat 39332
This theorem is referenced by:  4atexlemex6  40056
  Copyright terms: Public domain W3C validator