| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlsupr2 | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice has the superposition property. (Contributed by NM, 25-Nov-2012.) |
| Ref | Expression |
|---|---|
| hlsupr2.j | ⊢ ∨ = (join‘𝐾) |
| hlsupr2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| hlsupr2 | ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ∃𝑟 ∈ 𝐴 (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 2 | hlsupr2.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 3 | hlsupr2.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | 1, 2, 3 | hlsupr 39431 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ∃𝑟 ∈ 𝐴 (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄))) |
| 5 | 4 | ex 412 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 → ∃𝑟 ∈ 𝐴 (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄)))) |
| 6 | simpl1 1192 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑟 ∈ 𝐴) → 𝐾 ∈ HL) | |
| 7 | hlcvl 39404 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) | |
| 8 | 6, 7 | syl 17 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑟 ∈ 𝐴) → 𝐾 ∈ CvLat) |
| 9 | simpl2 1193 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑟 ∈ 𝐴) → 𝑃 ∈ 𝐴) | |
| 10 | simpl3 1194 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑟 ∈ 𝐴) → 𝑄 ∈ 𝐴) | |
| 11 | simpr 484 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑟 ∈ 𝐴) → 𝑟 ∈ 𝐴) | |
| 12 | 3, 1, 2 | cvlsupr3 39389 | . . . . 5 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) → ((𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟) ↔ (𝑃 ≠ 𝑄 → (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄))))) |
| 13 | 8, 9, 10, 11, 12 | syl13anc 1374 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑟 ∈ 𝐴) → ((𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟) ↔ (𝑃 ≠ 𝑄 → (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄))))) |
| 14 | 13 | rexbidva 3154 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (∃𝑟 ∈ 𝐴 (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟) ↔ ∃𝑟 ∈ 𝐴 (𝑃 ≠ 𝑄 → (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄))))) |
| 15 | ne0i 4291 | . . . . 5 ⊢ (𝑃 ∈ 𝐴 → 𝐴 ≠ ∅) | |
| 16 | 15 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝐴 ≠ ∅) |
| 17 | r19.37zv 4452 | . . . 4 ⊢ (𝐴 ≠ ∅ → (∃𝑟 ∈ 𝐴 (𝑃 ≠ 𝑄 → (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄))) ↔ (𝑃 ≠ 𝑄 → ∃𝑟 ∈ 𝐴 (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄))))) | |
| 18 | 16, 17 | syl 17 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (∃𝑟 ∈ 𝐴 (𝑃 ≠ 𝑄 → (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄))) ↔ (𝑃 ≠ 𝑄 → ∃𝑟 ∈ 𝐴 (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄))))) |
| 19 | 14, 18 | bitrd 279 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (∃𝑟 ∈ 𝐴 (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟) ↔ (𝑃 ≠ 𝑄 → ∃𝑟 ∈ 𝐴 (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄))))) |
| 20 | 5, 19 | mpbird 257 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ∃𝑟 ∈ 𝐴 (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 ∅c0 4283 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 lecple 17168 joincjn 18217 Atomscatm 39308 CvLatclc 39310 HLchlt 39395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-lat 18338 df-covers 39311 df-ats 39312 df-atl 39343 df-cvlat 39367 df-hlat 39396 |
| This theorem is referenced by: 4atexlemex6 40119 |
| Copyright terms: Public domain | W3C validator |