| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlsupr2 | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice has the superposition property. (Contributed by NM, 25-Nov-2012.) |
| Ref | Expression |
|---|---|
| hlsupr2.j | ⊢ ∨ = (join‘𝐾) |
| hlsupr2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| hlsupr2 | ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ∃𝑟 ∈ 𝐴 (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 2 | hlsupr2.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 3 | hlsupr2.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | 1, 2, 3 | hlsupr 39368 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ∃𝑟 ∈ 𝐴 (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄))) |
| 5 | 4 | ex 412 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 → ∃𝑟 ∈ 𝐴 (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄)))) |
| 6 | simpl1 1192 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑟 ∈ 𝐴) → 𝐾 ∈ HL) | |
| 7 | hlcvl 39340 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) | |
| 8 | 6, 7 | syl 17 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑟 ∈ 𝐴) → 𝐾 ∈ CvLat) |
| 9 | simpl2 1193 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑟 ∈ 𝐴) → 𝑃 ∈ 𝐴) | |
| 10 | simpl3 1194 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑟 ∈ 𝐴) → 𝑄 ∈ 𝐴) | |
| 11 | simpr 484 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑟 ∈ 𝐴) → 𝑟 ∈ 𝐴) | |
| 12 | 3, 1, 2 | cvlsupr3 39325 | . . . . 5 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) → ((𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟) ↔ (𝑃 ≠ 𝑄 → (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄))))) |
| 13 | 8, 9, 10, 11, 12 | syl13anc 1374 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑟 ∈ 𝐴) → ((𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟) ↔ (𝑃 ≠ 𝑄 → (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄))))) |
| 14 | 13 | rexbidva 3151 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (∃𝑟 ∈ 𝐴 (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟) ↔ ∃𝑟 ∈ 𝐴 (𝑃 ≠ 𝑄 → (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄))))) |
| 15 | ne0i 4294 | . . . . 5 ⊢ (𝑃 ∈ 𝐴 → 𝐴 ≠ ∅) | |
| 16 | 15 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝐴 ≠ ∅) |
| 17 | r19.37zv 4455 | . . . 4 ⊢ (𝐴 ≠ ∅ → (∃𝑟 ∈ 𝐴 (𝑃 ≠ 𝑄 → (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄))) ↔ (𝑃 ≠ 𝑄 → ∃𝑟 ∈ 𝐴 (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄))))) | |
| 18 | 16, 17 | syl 17 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (∃𝑟 ∈ 𝐴 (𝑃 ≠ 𝑄 → (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄))) ↔ (𝑃 ≠ 𝑄 → ∃𝑟 ∈ 𝐴 (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄))))) |
| 19 | 14, 18 | bitrd 279 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (∃𝑟 ∈ 𝐴 (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟) ↔ (𝑃 ≠ 𝑄 → ∃𝑟 ∈ 𝐴 (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄))))) |
| 20 | 5, 19 | mpbird 257 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ∃𝑟 ∈ 𝐴 (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 ∅c0 4286 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 lecple 17186 joincjn 18235 Atomscatm 39244 CvLatclc 39246 HLchlt 39331 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-proset 18218 df-poset 18237 df-plt 18252 df-lub 18268 df-glb 18269 df-join 18270 df-meet 18271 df-p0 18347 df-lat 18356 df-covers 39247 df-ats 39248 df-atl 39279 df-cvlat 39303 df-hlat 39332 |
| This theorem is referenced by: 4atexlemex6 40056 |
| Copyright terms: Public domain | W3C validator |