![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlsupr2 | Structured version Visualization version GIF version |
Description: A Hilbert lattice has the superposition property. (Contributed by NM, 25-Nov-2012.) |
Ref | Expression |
---|---|
hlsupr2.j | ⊢ ∨ = (join‘𝐾) |
hlsupr2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
hlsupr2 | ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ∃𝑟 ∈ 𝐴 (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2825 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
2 | hlsupr2.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
3 | hlsupr2.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | 1, 2, 3 | hlsupr 35461 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ∃𝑟 ∈ 𝐴 (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄))) |
5 | 4 | ex 403 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 → ∃𝑟 ∈ 𝐴 (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄)))) |
6 | simpl1 1248 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑟 ∈ 𝐴) → 𝐾 ∈ HL) | |
7 | hlcvl 35434 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CvLat) | |
8 | 6, 7 | syl 17 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑟 ∈ 𝐴) → 𝐾 ∈ CvLat) |
9 | simpl2 1250 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑟 ∈ 𝐴) → 𝑃 ∈ 𝐴) | |
10 | simpl3 1252 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑟 ∈ 𝐴) → 𝑄 ∈ 𝐴) | |
11 | simpr 479 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑟 ∈ 𝐴) → 𝑟 ∈ 𝐴) | |
12 | 3, 1, 2 | cvlsupr3 35419 | . . . . 5 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) → ((𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟) ↔ (𝑃 ≠ 𝑄 → (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄))))) |
13 | 8, 9, 10, 11, 12 | syl13anc 1497 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑟 ∈ 𝐴) → ((𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟) ↔ (𝑃 ≠ 𝑄 → (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄))))) |
14 | 13 | rexbidva 3259 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (∃𝑟 ∈ 𝐴 (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟) ↔ ∃𝑟 ∈ 𝐴 (𝑃 ≠ 𝑄 → (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄))))) |
15 | ne0i 4150 | . . . . 5 ⊢ (𝑃 ∈ 𝐴 → 𝐴 ≠ ∅) | |
16 | 15 | 3ad2ant2 1170 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝐴 ≠ ∅) |
17 | r19.37zv 4289 | . . . 4 ⊢ (𝐴 ≠ ∅ → (∃𝑟 ∈ 𝐴 (𝑃 ≠ 𝑄 → (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄))) ↔ (𝑃 ≠ 𝑄 → ∃𝑟 ∈ 𝐴 (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄))))) | |
18 | 16, 17 | syl 17 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (∃𝑟 ∈ 𝐴 (𝑃 ≠ 𝑄 → (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄))) ↔ (𝑃 ≠ 𝑄 → ∃𝑟 ∈ 𝐴 (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄))))) |
19 | 14, 18 | bitrd 271 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (∃𝑟 ∈ 𝐴 (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟) ↔ (𝑃 ≠ 𝑄 → ∃𝑟 ∈ 𝐴 (𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟(le‘𝐾)(𝑃 ∨ 𝑄))))) |
20 | 5, 19 | mpbird 249 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ∃𝑟 ∈ 𝐴 (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 ≠ wne 2999 ∃wrex 3118 ∅c0 4144 class class class wbr 4873 ‘cfv 6123 (class class class)co 6905 lecple 16312 joincjn 17297 Atomscatm 35338 CvLatclc 35340 HLchlt 35425 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-proset 17281 df-poset 17299 df-plt 17311 df-lub 17327 df-glb 17328 df-join 17329 df-meet 17330 df-p0 17392 df-lat 17399 df-covers 35341 df-ats 35342 df-atl 35373 df-cvlat 35397 df-hlat 35426 |
This theorem is referenced by: 4atexlemex6 36149 |
Copyright terms: Public domain | W3C validator |