Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlsupr2 Structured version   Visualization version   GIF version

Theorem hlsupr2 37401
Description: A Hilbert lattice has the superposition property. (Contributed by NM, 25-Nov-2012.)
Hypotheses
Ref Expression
hlsupr2.j = (join‘𝐾)
hlsupr2.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
hlsupr2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ∃𝑟𝐴 (𝑃 𝑟) = (𝑄 𝑟))
Distinct variable groups:   𝐴,𝑟   𝐾,𝑟   𝑃,𝑟   𝑄,𝑟
Allowed substitution hint:   (𝑟)

Proof of Theorem hlsupr2
StepHypRef Expression
1 eqid 2738 . . . 4 (le‘𝐾) = (le‘𝐾)
2 hlsupr2.j . . . 4 = (join‘𝐾)
3 hlsupr2.a . . . 4 𝐴 = (Atoms‘𝐾)
41, 2, 3hlsupr 37400 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → ∃𝑟𝐴 (𝑟𝑃𝑟𝑄𝑟(le‘𝐾)(𝑃 𝑄)))
54ex 413 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝑄 → ∃𝑟𝐴 (𝑟𝑃𝑟𝑄𝑟(le‘𝐾)(𝑃 𝑄))))
6 simpl1 1190 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝐾 ∈ HL)
7 hlcvl 37373 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ CvLat)
86, 7syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝐾 ∈ CvLat)
9 simpl2 1191 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑃𝐴)
10 simpl3 1192 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑄𝐴)
11 simpr 485 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑟𝐴)
123, 1, 2cvlsupr3 37358 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑟𝐴)) → ((𝑃 𝑟) = (𝑄 𝑟) ↔ (𝑃𝑄 → (𝑟𝑃𝑟𝑄𝑟(le‘𝐾)(𝑃 𝑄)))))
138, 9, 10, 11, 12syl13anc 1371 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → ((𝑃 𝑟) = (𝑄 𝑟) ↔ (𝑃𝑄 → (𝑟𝑃𝑟𝑄𝑟(le‘𝐾)(𝑃 𝑄)))))
1413rexbidva 3225 . . 3 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (∃𝑟𝐴 (𝑃 𝑟) = (𝑄 𝑟) ↔ ∃𝑟𝐴 (𝑃𝑄 → (𝑟𝑃𝑟𝑄𝑟(le‘𝐾)(𝑃 𝑄)))))
15 ne0i 4268 . . . . 5 (𝑃𝐴𝐴 ≠ ∅)
16153ad2ant2 1133 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝐴 ≠ ∅)
17 r19.37zv 4432 . . . 4 (𝐴 ≠ ∅ → (∃𝑟𝐴 (𝑃𝑄 → (𝑟𝑃𝑟𝑄𝑟(le‘𝐾)(𝑃 𝑄))) ↔ (𝑃𝑄 → ∃𝑟𝐴 (𝑟𝑃𝑟𝑄𝑟(le‘𝐾)(𝑃 𝑄)))))
1816, 17syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (∃𝑟𝐴 (𝑃𝑄 → (𝑟𝑃𝑟𝑄𝑟(le‘𝐾)(𝑃 𝑄))) ↔ (𝑃𝑄 → ∃𝑟𝐴 (𝑟𝑃𝑟𝑄𝑟(le‘𝐾)(𝑃 𝑄)))))
1914, 18bitrd 278 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (∃𝑟𝐴 (𝑃 𝑟) = (𝑄 𝑟) ↔ (𝑃𝑄 → ∃𝑟𝐴 (𝑟𝑃𝑟𝑄𝑟(le‘𝐾)(𝑃 𝑄)))))
205, 19mpbird 256 1 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ∃𝑟𝐴 (𝑃 𝑟) = (𝑄 𝑟))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065  c0 4256   class class class wbr 5074  cfv 6433  (class class class)co 7275  lecple 16969  joincjn 18029  Atomscatm 37277  CvLatclc 37279  HLchlt 37364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-lat 18150  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365
This theorem is referenced by:  4atexlemex6  38088
  Copyright terms: Public domain W3C validator