![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dftrrels3 | Structured version Visualization version GIF version |
Description: Alternate definition of the class of transitive relations. (Contributed by Peter Mazsa, 22-Jul-2021.) |
Ref | Expression |
---|---|
dftrrels3 | ⊢ TrRels = {𝑟 ∈ Rels ∣ ∀𝑥∀𝑦∀𝑧((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dftrrels2 34807 | . 2 ⊢ TrRels = {𝑟 ∈ Rels ∣ (𝑟 ∘ 𝑟) ⊆ 𝑟} | |
2 | cotr 5723 | . 2 ⊢ ((𝑟 ∘ 𝑟) ⊆ 𝑟 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)) | |
3 | 1, 2 | rabbieq 34507 | 1 ⊢ TrRels = {𝑟 ∈ Rels ∣ ∀𝑥∀𝑦∀𝑧((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∀wal 1651 = wceq 1653 {crab 3091 ⊆ wss 3767 class class class wbr 4841 ∘ ccom 5314 Rels crels 34463 TrRels ctrrels 34475 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pr 5095 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-op 4373 df-br 4842 df-opab 4904 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-rels 34721 df-ssr 34734 df-trs 34804 df-trrels 34805 |
This theorem is referenced by: eltrrels3 34812 |
Copyright terms: Public domain | W3C validator |