| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dftrrels3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the class of transitive relations. (Contributed by Peter Mazsa, 22-Jul-2021.) |
| Ref | Expression |
|---|---|
| dftrrels3 | ⊢ TrRels = {𝑟 ∈ Rels ∣ ∀𝑥∀𝑦∀𝑧((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dftrrels2 38691 | . 2 ⊢ TrRels = {𝑟 ∈ Rels ∣ (𝑟 ∘ 𝑟) ⊆ 𝑟} | |
| 2 | cotr 6063 | . 2 ⊢ ((𝑟 ∘ 𝑟) ⊆ 𝑟 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)) | |
| 3 | 1, 2 | rabbieq 3404 | 1 ⊢ TrRels = {𝑟 ∈ Rels ∣ ∀𝑥∀𝑦∀𝑧((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 = wceq 1541 {crab 3396 ⊆ wss 3898 class class class wbr 5093 ∘ ccom 5623 Rels crels 38244 TrRels ctrrels 38256 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-rels 38484 df-ssr 38610 df-trs 38688 df-trrels 38689 |
| This theorem is referenced by: eltrrels3 38696 |
| Copyright terms: Public domain | W3C validator |