Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dftrrels3 Structured version   Visualization version   GIF version

Theorem dftrrels3 38523
Description: Alternate definition of the class of transitive relations. (Contributed by Peter Mazsa, 22-Jul-2021.)
Assertion
Ref Expression
dftrrels3 TrRels = {𝑟 ∈ Rels ∣ ∀𝑥𝑦𝑧((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)}
Distinct variable group:   𝑥,𝑟,𝑦,𝑧

Proof of Theorem dftrrels3
StepHypRef Expression
1 dftrrels2 38522 . 2 TrRels = {𝑟 ∈ Rels ∣ (𝑟𝑟) ⊆ 𝑟}
2 cotr 6097 . 2 ((𝑟𝑟) ⊆ 𝑟 ↔ ∀𝑥𝑦𝑧((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧))
31, 2rabbieq 3422 1 TrRels = {𝑟 ∈ Rels ∣ ∀𝑥𝑦𝑧((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537   = wceq 1539  {crab 3413  wss 3924   class class class wbr 5117  ccom 5656   Rels crels 38130   TrRels ctrrels 38142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pr 5400
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-br 5118  df-opab 5180  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-rels 38432  df-ssr 38445  df-trs 38519  df-trrels 38520
This theorem is referenced by:  eltrrels3  38527
  Copyright terms: Public domain W3C validator