Mathbox for Peter Mazsa < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dftrrels3 Structured version   Visualization version   GIF version

Theorem dftrrels3 34808
 Description: Alternate definition of the class of transitive relations. (Contributed by Peter Mazsa, 22-Jul-2021.)
Assertion
Ref Expression
dftrrels3 TrRels = {𝑟 ∈ Rels ∣ ∀𝑥𝑦𝑧((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)}
Distinct variable group:   𝑥,𝑟,𝑦,𝑧

Proof of Theorem dftrrels3
StepHypRef Expression
1 dftrrels2 34807 . 2 TrRels = {𝑟 ∈ Rels ∣ (𝑟𝑟) ⊆ 𝑟}
2 cotr 5723 . 2 ((𝑟𝑟) ⊆ 𝑟 ↔ ∀𝑥𝑦𝑧((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧))
31, 2rabbieq 34507 1 TrRels = {𝑟 ∈ Rels ∣ ∀𝑥𝑦𝑧((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)}
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 385  ∀wal 1651   = wceq 1653  {crab 3091   ⊆ wss 3767   class class class wbr 4841   ∘ ccom 5314   Rels crels 34463   TrRels ctrrels 34475 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-sep 4973  ax-nul 4981  ax-pr 5095 This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ral 3092  df-rex 3093  df-rab 3096  df-v 3385  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-op 4373  df-br 4842  df-opab 4904  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-rels 34721  df-ssr 34734  df-trs 34804  df-trrels 34805 This theorem is referenced by:  eltrrels3  34812
 Copyright terms: Public domain W3C validator