| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dftrrels3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the class of transitive relations. (Contributed by Peter Mazsa, 22-Jul-2021.) |
| Ref | Expression |
|---|---|
| dftrrels3 | ⊢ TrRels = {𝑟 ∈ Rels ∣ ∀𝑥∀𝑦∀𝑧((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dftrrels2 38522 | . 2 ⊢ TrRels = {𝑟 ∈ Rels ∣ (𝑟 ∘ 𝑟) ⊆ 𝑟} | |
| 2 | cotr 6097 | . 2 ⊢ ((𝑟 ∘ 𝑟) ⊆ 𝑟 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)) | |
| 3 | 1, 2 | rabbieq 3422 | 1 ⊢ TrRels = {𝑟 ∈ Rels ∣ ∀𝑥∀𝑦∀𝑧((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 = wceq 1539 {crab 3413 ⊆ wss 3924 class class class wbr 5117 ∘ ccom 5656 Rels crels 38130 TrRels ctrrels 38142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pr 5400 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-br 5118 df-opab 5180 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-rels 38432 df-ssr 38445 df-trs 38519 df-trrels 38520 |
| This theorem is referenced by: eltrrels3 38527 |
| Copyright terms: Public domain | W3C validator |