| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > refsymrels3 | Structured version Visualization version GIF version | ||
| Description: Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels3 38612) can use the ∀𝑥 ∈ dom 𝑟𝑥𝑟𝑥 version for their reflexive part, not just the ∀𝑥 ∈ dom 𝑟∀𝑦 ∈ ran 𝑟(𝑥 = 𝑦 → 𝑥𝑟𝑦) version of dfrefrels3 38537, cf. the comment of dfrefrel3 38539. (Contributed by Peter Mazsa, 22-Jul-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| refsymrels3 | ⊢ ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑟𝑦 → 𝑦𝑟𝑥))} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | refsymrels2 38588 | . 2 ⊢ ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} | |
| 2 | idrefALT 6105 | . . 3 ⊢ (( I ↾ dom 𝑟) ⊆ 𝑟 ↔ ∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥) | |
| 3 | cnvsym 6106 | . . 3 ⊢ (◡𝑟 ⊆ 𝑟 ↔ ∀𝑥∀𝑦(𝑥𝑟𝑦 → 𝑦𝑟𝑥)) | |
| 4 | 2, 3 | anbi12i 628 | . 2 ⊢ ((( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟) ↔ (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑟𝑦 → 𝑦𝑟𝑥))) |
| 5 | 1, 4 | rabbieq 3429 | 1 ⊢ ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑟𝑦 → 𝑦𝑟𝑥))} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∀wral 3052 {crab 3420 ∩ cin 3930 ⊆ wss 3931 class class class wbr 5124 I cid 5552 ◡ccnv 5658 dom cdm 5659 ↾ cres 5661 Rels crels 38206 RefRels crefrels 38209 SymRels csymrels 38215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-dm 5669 df-rn 5670 df-res 5671 df-rels 38508 df-ssr 38521 df-refs 38533 df-refrels 38534 df-syms 38565 df-symrels 38566 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |