| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > refsymrels3 | Structured version Visualization version GIF version | ||
| Description: Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels3 38565) can use the ∀𝑥 ∈ dom 𝑟𝑥𝑟𝑥 version for their reflexive part, not just the ∀𝑥 ∈ dom 𝑟∀𝑦 ∈ ran 𝑟(𝑥 = 𝑦 → 𝑥𝑟𝑦) version of dfrefrels3 38490, cf. the comment of dfrefrel3 38492. (Contributed by Peter Mazsa, 22-Jul-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| refsymrels3 | ⊢ ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑟𝑦 → 𝑦𝑟𝑥))} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | refsymrels2 38541 | . 2 ⊢ ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟)} | |
| 2 | idrefALT 6066 | . . 3 ⊢ (( I ↾ dom 𝑟) ⊆ 𝑟 ↔ ∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥) | |
| 3 | cnvsym 6067 | . . 3 ⊢ (◡𝑟 ⊆ 𝑟 ↔ ∀𝑥∀𝑦(𝑥𝑟𝑦 → 𝑦𝑟𝑥)) | |
| 4 | 2, 3 | anbi12i 628 | . 2 ⊢ ((( I ↾ dom 𝑟) ⊆ 𝑟 ∧ ◡𝑟 ⊆ 𝑟) ↔ (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑟𝑦 → 𝑦𝑟𝑥))) |
| 5 | 1, 4 | rabbieq 3405 | 1 ⊢ ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥∀𝑦(𝑥𝑟𝑦 → 𝑦𝑟𝑥))} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∀wral 3044 {crab 3396 ∩ cin 3904 ⊆ wss 3905 class class class wbr 5095 I cid 5517 ◡ccnv 5622 dom cdm 5623 ↾ cres 5625 Rels crels 38156 RefRels crefrels 38159 SymRels csymrels 38165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-dm 5633 df-rn 5634 df-res 5635 df-rels 38461 df-ssr 38474 df-refs 38486 df-refrels 38487 df-syms 38518 df-symrels 38519 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |