Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refsymrels3 Structured version   Visualization version   GIF version

Theorem refsymrels3 38602
Description: Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels3 38625) can use the 𝑥 ∈ dom 𝑟𝑥𝑟𝑥 version for their reflexive part, not just the 𝑥 ∈ dom 𝑟𝑦 ∈ ran 𝑟(𝑥 = 𝑦𝑥𝑟𝑦) version of dfrefrels3 38550, cf. the comment of dfrefrel3 38552. (Contributed by Peter Mazsa, 22-Jul-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
refsymrels3 ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥𝑦(𝑥𝑟𝑦𝑦𝑟𝑥))}
Distinct variable group:   𝑥,𝑟,𝑦

Proof of Theorem refsymrels3
StepHypRef Expression
1 refsymrels2 38601 . 2 ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟)}
2 idrefALT 6060 . . 3 (( I ↾ dom 𝑟) ⊆ 𝑟 ↔ ∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥)
3 cnvsym 6061 . . 3 (𝑟𝑟 ↔ ∀𝑥𝑦(𝑥𝑟𝑦𝑦𝑟𝑥))
42, 3anbi12i 628 . 2 ((( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟) ↔ (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥𝑦(𝑥𝑟𝑦𝑦𝑟𝑥)))
51, 4rabbieq 3403 1 ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥𝑦(𝑥𝑟𝑦𝑦𝑟𝑥))}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1539   = wceq 1541  wral 3047  {crab 3395  cin 3901  wss 3902   class class class wbr 5091   I cid 5510  ccnv 5615  dom cdm 5616  cres 5618   Rels crels 38216   RefRels crefrels 38219   SymRels csymrels 38225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-dm 5626  df-rn 5627  df-res 5628  df-rels 38521  df-ssr 38534  df-refs 38546  df-refrels 38547  df-syms 38578  df-symrels 38579
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator