Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refsymrels3 Structured version   Visualization version   GIF version

Theorem refsymrels3 38589
Description: Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels3 38612) can use the 𝑥 ∈ dom 𝑟𝑥𝑟𝑥 version for their reflexive part, not just the 𝑥 ∈ dom 𝑟𝑦 ∈ ran 𝑟(𝑥 = 𝑦𝑥𝑟𝑦) version of dfrefrels3 38537, cf. the comment of dfrefrel3 38539. (Contributed by Peter Mazsa, 22-Jul-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
refsymrels3 ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥𝑦(𝑥𝑟𝑦𝑦𝑟𝑥))}
Distinct variable group:   𝑥,𝑟,𝑦

Proof of Theorem refsymrels3
StepHypRef Expression
1 refsymrels2 38588 . 2 ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟)}
2 idrefALT 6105 . . 3 (( I ↾ dom 𝑟) ⊆ 𝑟 ↔ ∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥)
3 cnvsym 6106 . . 3 (𝑟𝑟 ↔ ∀𝑥𝑦(𝑥𝑟𝑦𝑦𝑟𝑥))
42, 3anbi12i 628 . 2 ((( I ↾ dom 𝑟) ⊆ 𝑟𝑟𝑟) ↔ (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥𝑦(𝑥𝑟𝑦𝑦𝑟𝑥)))
51, 4rabbieq 3429 1 ( RefRels ∩ SymRels ) = {𝑟 ∈ Rels ∣ (∀𝑥 ∈ dom 𝑟 𝑥𝑟𝑥 ∧ ∀𝑥𝑦(𝑥𝑟𝑦𝑦𝑟𝑥))}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wral 3052  {crab 3420  cin 3930  wss 3931   class class class wbr 5124   I cid 5552  ccnv 5658  dom cdm 5659  cres 5661   Rels crels 38206   RefRels crefrels 38209   SymRels csymrels 38215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-dm 5669  df-rn 5670  df-res 5671  df-rels 38508  df-ssr 38521  df-refs 38533  df-refrels 38534  df-syms 38565  df-symrels 38566
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator