| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfdisjs4 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
| Ref | Expression |
|---|---|
| dfdisjs4 | ⊢ Disjs = {𝑟 ∈ Rels ∣ ∀𝑥∃*𝑢 𝑢𝑟𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdisjs2 38710 | . 2 ⊢ Disjs = {𝑟 ∈ Rels ∣ ≀ ◡𝑟 ⊆ I } | |
| 2 | cosscnvssid4 38478 | . 2 ⊢ ( ≀ ◡𝑟 ⊆ I ↔ ∀𝑥∃*𝑢 𝑢𝑟𝑥) | |
| 3 | 1, 2 | rabbieq 3445 | 1 ⊢ Disjs = {𝑟 ∈ Rels ∣ ∀𝑥∃*𝑢 𝑢𝑟𝑥} |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wal 1538 = wceq 1540 ∃*wmo 2538 {crab 3436 ⊆ wss 3951 class class class wbr 5143 I cid 5577 ◡ccnv 5684 ≀ ccoss 38182 Rels crels 38184 Disjs cdisjs 38215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-coss 38412 df-rels 38486 df-ssr 38499 df-cnvrefs 38526 df-cnvrefrels 38527 df-disjss 38704 df-disjs 38705 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |