| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfdisjs4 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
| Ref | Expression |
|---|---|
| dfdisjs4 | ⊢ Disjs = {𝑟 ∈ Rels ∣ ∀𝑥∃*𝑢 𝑢𝑟𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdisjs2 38673 | . 2 ⊢ Disjs = {𝑟 ∈ Rels ∣ ≀ ◡𝑟 ⊆ I } | |
| 2 | cosscnvssid4 38441 | . 2 ⊢ ( ≀ ◡𝑟 ⊆ I ↔ ∀𝑥∃*𝑢 𝑢𝑟𝑥) | |
| 3 | 1, 2 | rabbieq 3424 | 1 ⊢ Disjs = {𝑟 ∈ Rels ∣ ∀𝑥∃*𝑢 𝑢𝑟𝑥} |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wal 1538 = wceq 1540 ∃*wmo 2537 {crab 3415 ⊆ wss 3926 class class class wbr 5119 I cid 5547 ◡ccnv 5653 ≀ ccoss 38145 Rels crels 38147 Disjs cdisjs 38178 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-coss 38375 df-rels 38449 df-ssr 38462 df-cnvrefs 38489 df-cnvrefrels 38490 df-disjss 38667 df-disjs 38668 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |