Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfdisjs3 Structured version   Visualization version   GIF version

Theorem dfdisjs3 36821
Description: Alternate definition of the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.)
Assertion
Ref Expression
dfdisjs3 Disjs = {𝑟 ∈ Rels ∣ ∀𝑢𝑣𝑥((𝑢𝑟𝑥𝑣𝑟𝑥) → 𝑢 = 𝑣)}
Distinct variable group:   𝑢,𝑟,𝑣,𝑥

Proof of Theorem dfdisjs3
StepHypRef Expression
1 dfdisjs2 36820 . 2 Disjs = {𝑟 ∈ Rels ∣ ≀ 𝑟 ⊆ I }
2 cosscnvssid3 36594 . 2 ( ≀ 𝑟 ⊆ I ↔ ∀𝑢𝑣𝑥((𝑢𝑟𝑥𝑣𝑟𝑥) → 𝑢 = 𝑣))
31, 2rabbieq 36390 1 Disjs = {𝑟 ∈ Rels ∣ ∀𝑢𝑣𝑥((𝑢𝑟𝑥𝑣𝑟𝑥) → 𝑢 = 𝑣)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1537   = wceq 1539  {crab 3068  wss 3887   class class class wbr 5074   I cid 5488  ccnv 5588  ccoss 36333   Rels crels 36335   Disjs cdisjs 36366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-coss 36537  df-rels 36603  df-ssr 36616  df-cnvrefs 36641  df-cnvrefrels 36642  df-disjss 36814  df-disjs 36815
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator