MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frirr Structured version   Visualization version   GIF version

Theorem frirr 5617
Description: A well-founded relation is irreflexive. Special case of Proposition 6.23 of [TakeutiZaring] p. 30. (Contributed by NM, 2-Jan-1994.) (Revised by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
frirr ((𝑅 Fr 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)

Proof of Theorem frirr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . 3 ((𝑅 Fr 𝐴𝐵𝐴) → 𝑅 Fr 𝐴)
2 snssi 4775 . . . 4 (𝐵𝐴 → {𝐵} ⊆ 𝐴)
32adantl 481 . . 3 ((𝑅 Fr 𝐴𝐵𝐴) → {𝐵} ⊆ 𝐴)
4 snnzg 4741 . . . 4 (𝐵𝐴 → {𝐵} ≠ ∅)
54adantl 481 . . 3 ((𝑅 Fr 𝐴𝐵𝐴) → {𝐵} ≠ ∅)
6 snex 5394 . . . 4 {𝐵} ∈ V
76frc 5604 . . 3 ((𝑅 Fr 𝐴 ∧ {𝐵} ⊆ 𝐴 ∧ {𝐵} ≠ ∅) → ∃𝑦 ∈ {𝐵} {𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅)
81, 3, 5, 7syl3anc 1373 . 2 ((𝑅 Fr 𝐴𝐵𝐴) → ∃𝑦 ∈ {𝐵} {𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅)
9 breq1 5113 . . . . . . 7 (𝑥 = 𝑧 → (𝑥𝑅𝑦𝑧𝑅𝑦))
109rabeq0w 4353 . . . . . 6 ({𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅ ↔ ∀𝑧 ∈ {𝐵} ¬ 𝑧𝑅𝑦)
11 breq2 5114 . . . . . . . 8 (𝑦 = 𝐵 → (𝑧𝑅𝑦𝑧𝑅𝐵))
1211notbid 318 . . . . . . 7 (𝑦 = 𝐵 → (¬ 𝑧𝑅𝑦 ↔ ¬ 𝑧𝑅𝐵))
1312ralbidv 3157 . . . . . 6 (𝑦 = 𝐵 → (∀𝑧 ∈ {𝐵} ¬ 𝑧𝑅𝑦 ↔ ∀𝑧 ∈ {𝐵} ¬ 𝑧𝑅𝐵))
1410, 13bitrid 283 . . . . 5 (𝑦 = 𝐵 → ({𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅ ↔ ∀𝑧 ∈ {𝐵} ¬ 𝑧𝑅𝐵))
1514rexsng 4643 . . . 4 (𝐵𝐴 → (∃𝑦 ∈ {𝐵} {𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅ ↔ ∀𝑧 ∈ {𝐵} ¬ 𝑧𝑅𝐵))
16 breq1 5113 . . . . . 6 (𝑧 = 𝐵 → (𝑧𝑅𝐵𝐵𝑅𝐵))
1716notbid 318 . . . . 5 (𝑧 = 𝐵 → (¬ 𝑧𝑅𝐵 ↔ ¬ 𝐵𝑅𝐵))
1817ralsng 4642 . . . 4 (𝐵𝐴 → (∀𝑧 ∈ {𝐵} ¬ 𝑧𝑅𝐵 ↔ ¬ 𝐵𝑅𝐵))
1915, 18bitrd 279 . . 3 (𝐵𝐴 → (∃𝑦 ∈ {𝐵} {𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅ ↔ ¬ 𝐵𝑅𝐵))
2019adantl 481 . 2 ((𝑅 Fr 𝐴𝐵𝐴) → (∃𝑦 ∈ {𝐵} {𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅ ↔ ¬ 𝐵𝑅𝐵))
218, 20mpbid 232 1 ((𝑅 Fr 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  wss 3917  c0 4299  {csn 4592   class class class wbr 5110   Fr wfr 5591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-fr 5594
This theorem is referenced by:  efrirr  5621  predfrirr  6310  dfwe2  7753  bnj1417  35038  efrunt  35707  ifr0  44446
  Copyright terms: Public domain W3C validator