| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frirr | Structured version Visualization version GIF version | ||
| Description: A well-founded relation is irreflexive. Special case of Proposition 6.23 of [TakeutiZaring] p. 30. (Contributed by NM, 2-Jan-1994.) (Revised by Mario Carneiro, 22-Jun-2015.) |
| Ref | Expression |
|---|---|
| frirr | ⊢ ((𝑅 Fr 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝑅 Fr 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝑅 Fr 𝐴) | |
| 2 | snssi 4789 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → {𝐵} ⊆ 𝐴) | |
| 3 | 2 | adantl 481 | . . 3 ⊢ ((𝑅 Fr 𝐴 ∧ 𝐵 ∈ 𝐴) → {𝐵} ⊆ 𝐴) |
| 4 | snnzg 4755 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → {𝐵} ≠ ∅) | |
| 5 | 4 | adantl 481 | . . 3 ⊢ ((𝑅 Fr 𝐴 ∧ 𝐵 ∈ 𝐴) → {𝐵} ≠ ∅) |
| 6 | snex 5411 | . . . 4 ⊢ {𝐵} ∈ V | |
| 7 | 6 | frc 5622 | . . 3 ⊢ ((𝑅 Fr 𝐴 ∧ {𝐵} ⊆ 𝐴 ∧ {𝐵} ≠ ∅) → ∃𝑦 ∈ {𝐵} {𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅) |
| 8 | 1, 3, 5, 7 | syl3anc 1373 | . 2 ⊢ ((𝑅 Fr 𝐴 ∧ 𝐵 ∈ 𝐴) → ∃𝑦 ∈ {𝐵} {𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅) |
| 9 | breq1 5127 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝑥𝑅𝑦 ↔ 𝑧𝑅𝑦)) | |
| 10 | 9 | rabeq0w 4367 | . . . . . 6 ⊢ ({𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅ ↔ ∀𝑧 ∈ {𝐵} ¬ 𝑧𝑅𝑦) |
| 11 | breq2 5128 | . . . . . . . 8 ⊢ (𝑦 = 𝐵 → (𝑧𝑅𝑦 ↔ 𝑧𝑅𝐵)) | |
| 12 | 11 | notbid 318 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → (¬ 𝑧𝑅𝑦 ↔ ¬ 𝑧𝑅𝐵)) |
| 13 | 12 | ralbidv 3164 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (∀𝑧 ∈ {𝐵} ¬ 𝑧𝑅𝑦 ↔ ∀𝑧 ∈ {𝐵} ¬ 𝑧𝑅𝐵)) |
| 14 | 10, 13 | bitrid 283 | . . . . 5 ⊢ (𝑦 = 𝐵 → ({𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅ ↔ ∀𝑧 ∈ {𝐵} ¬ 𝑧𝑅𝐵)) |
| 15 | 14 | rexsng 4657 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → (∃𝑦 ∈ {𝐵} {𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅ ↔ ∀𝑧 ∈ {𝐵} ¬ 𝑧𝑅𝐵)) |
| 16 | breq1 5127 | . . . . . 6 ⊢ (𝑧 = 𝐵 → (𝑧𝑅𝐵 ↔ 𝐵𝑅𝐵)) | |
| 17 | 16 | notbid 318 | . . . . 5 ⊢ (𝑧 = 𝐵 → (¬ 𝑧𝑅𝐵 ↔ ¬ 𝐵𝑅𝐵)) |
| 18 | 17 | ralsng 4656 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → (∀𝑧 ∈ {𝐵} ¬ 𝑧𝑅𝐵 ↔ ¬ 𝐵𝑅𝐵)) |
| 19 | 15, 18 | bitrd 279 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (∃𝑦 ∈ {𝐵} {𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅ ↔ ¬ 𝐵𝑅𝐵)) |
| 20 | 19 | adantl 481 | . 2 ⊢ ((𝑅 Fr 𝐴 ∧ 𝐵 ∈ 𝐴) → (∃𝑦 ∈ {𝐵} {𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅ ↔ ¬ 𝐵𝑅𝐵)) |
| 21 | 8, 20 | mpbid 232 | 1 ⊢ ((𝑅 Fr 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∀wral 3052 ∃wrex 3061 {crab 3420 ⊆ wss 3931 ∅c0 4313 {csn 4606 class class class wbr 5124 Fr wfr 5608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-fr 5611 |
| This theorem is referenced by: efrirr 5639 predfrirr 6328 dfwe2 7773 bnj1417 35077 efrunt 35735 ifr0 44441 |
| Copyright terms: Public domain | W3C validator |