MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frirr Structured version   Visualization version   GIF version

Theorem frirr 5557
Description: A well-founded relation is irreflexive. Special case of Proposition 6.23 of [TakeutiZaring] p. 30. (Contributed by NM, 2-Jan-1994.) (Revised by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
frirr ((𝑅 Fr 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)

Proof of Theorem frirr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . 3 ((𝑅 Fr 𝐴𝐵𝐴) → 𝑅 Fr 𝐴)
2 snssi 4738 . . . 4 (𝐵𝐴 → {𝐵} ⊆ 𝐴)
32adantl 481 . . 3 ((𝑅 Fr 𝐴𝐵𝐴) → {𝐵} ⊆ 𝐴)
4 snnzg 4707 . . . 4 (𝐵𝐴 → {𝐵} ≠ ∅)
54adantl 481 . . 3 ((𝑅 Fr 𝐴𝐵𝐴) → {𝐵} ≠ ∅)
6 snex 5349 . . . 4 {𝐵} ∈ V
76frc 5546 . . 3 ((𝑅 Fr 𝐴 ∧ {𝐵} ⊆ 𝐴 ∧ {𝐵} ≠ ∅) → ∃𝑦 ∈ {𝐵} {𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅)
81, 3, 5, 7syl3anc 1369 . 2 ((𝑅 Fr 𝐴𝐵𝐴) → ∃𝑦 ∈ {𝐵} {𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅)
9 breq1 5073 . . . . . . 7 (𝑥 = 𝑧 → (𝑥𝑅𝑦𝑧𝑅𝑦))
109rabeq0w 4314 . . . . . 6 ({𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅ ↔ ∀𝑧 ∈ {𝐵} ¬ 𝑧𝑅𝑦)
11 breq2 5074 . . . . . . . 8 (𝑦 = 𝐵 → (𝑧𝑅𝑦𝑧𝑅𝐵))
1211notbid 317 . . . . . . 7 (𝑦 = 𝐵 → (¬ 𝑧𝑅𝑦 ↔ ¬ 𝑧𝑅𝐵))
1312ralbidv 3120 . . . . . 6 (𝑦 = 𝐵 → (∀𝑧 ∈ {𝐵} ¬ 𝑧𝑅𝑦 ↔ ∀𝑧 ∈ {𝐵} ¬ 𝑧𝑅𝐵))
1410, 13syl5bb 282 . . . . 5 (𝑦 = 𝐵 → ({𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅ ↔ ∀𝑧 ∈ {𝐵} ¬ 𝑧𝑅𝐵))
1514rexsng 4607 . . . 4 (𝐵𝐴 → (∃𝑦 ∈ {𝐵} {𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅ ↔ ∀𝑧 ∈ {𝐵} ¬ 𝑧𝑅𝐵))
16 breq1 5073 . . . . . 6 (𝑧 = 𝐵 → (𝑧𝑅𝐵𝐵𝑅𝐵))
1716notbid 317 . . . . 5 (𝑧 = 𝐵 → (¬ 𝑧𝑅𝐵 ↔ ¬ 𝐵𝑅𝐵))
1817ralsng 4606 . . . 4 (𝐵𝐴 → (∀𝑧 ∈ {𝐵} ¬ 𝑧𝑅𝐵 ↔ ¬ 𝐵𝑅𝐵))
1915, 18bitrd 278 . . 3 (𝐵𝐴 → (∃𝑦 ∈ {𝐵} {𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅ ↔ ¬ 𝐵𝑅𝐵))
2019adantl 481 . 2 ((𝑅 Fr 𝐴𝐵𝐴) → (∃𝑦 ∈ {𝐵} {𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅ ↔ ¬ 𝐵𝑅𝐵))
218, 20mpbid 231 1 ((𝑅 Fr 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  {crab 3067  wss 3883  c0 4253  {csn 4558   class class class wbr 5070   Fr wfr 5532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-fr 5535
This theorem is referenced by:  efrirr  5561  predfrirr  6226  dfwe2  7602  bnj1417  32921  efrunt  33554  ifr0  41957
  Copyright terms: Public domain W3C validator