MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frirr Structured version   Visualization version   GIF version

Theorem frirr 5496
Description: A well-founded relation is irreflexive. Special case of Proposition 6.23 of [TakeutiZaring] p. 30. (Contributed by NM, 2-Jan-1994.) (Revised by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
frirr ((𝑅 Fr 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)

Proof of Theorem frirr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 486 . . 3 ((𝑅 Fr 𝐴𝐵𝐴) → 𝑅 Fr 𝐴)
2 snssi 4701 . . . 4 (𝐵𝐴 → {𝐵} ⊆ 𝐴)
32adantl 485 . . 3 ((𝑅 Fr 𝐴𝐵𝐴) → {𝐵} ⊆ 𝐴)
4 snnzg 4670 . . . 4 (𝐵𝐴 → {𝐵} ≠ ∅)
54adantl 485 . . 3 ((𝑅 Fr 𝐴𝐵𝐴) → {𝐵} ≠ ∅)
6 snex 5297 . . . 4 {𝐵} ∈ V
76frc 5485 . . 3 ((𝑅 Fr 𝐴 ∧ {𝐵} ⊆ 𝐴 ∧ {𝐵} ≠ ∅) → ∃𝑦 ∈ {𝐵} {𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅)
81, 3, 5, 7syl3anc 1368 . 2 ((𝑅 Fr 𝐴𝐵𝐴) → ∃𝑦 ∈ {𝐵} {𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅)
9 rabeq0 4292 . . . . . 6 ({𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅ ↔ ∀𝑥 ∈ {𝐵} ¬ 𝑥𝑅𝑦)
10 breq2 5034 . . . . . . . 8 (𝑦 = 𝐵 → (𝑥𝑅𝑦𝑥𝑅𝐵))
1110notbid 321 . . . . . . 7 (𝑦 = 𝐵 → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑥𝑅𝐵))
1211ralbidv 3162 . . . . . 6 (𝑦 = 𝐵 → (∀𝑥 ∈ {𝐵} ¬ 𝑥𝑅𝑦 ↔ ∀𝑥 ∈ {𝐵} ¬ 𝑥𝑅𝐵))
139, 12syl5bb 286 . . . . 5 (𝑦 = 𝐵 → ({𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅ ↔ ∀𝑥 ∈ {𝐵} ¬ 𝑥𝑅𝐵))
1413rexsng 4574 . . . 4 (𝐵𝐴 → (∃𝑦 ∈ {𝐵} {𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅ ↔ ∀𝑥 ∈ {𝐵} ¬ 𝑥𝑅𝐵))
15 breq1 5033 . . . . . 6 (𝑥 = 𝐵 → (𝑥𝑅𝐵𝐵𝑅𝐵))
1615notbid 321 . . . . 5 (𝑥 = 𝐵 → (¬ 𝑥𝑅𝐵 ↔ ¬ 𝐵𝑅𝐵))
1716ralsng 4573 . . . 4 (𝐵𝐴 → (∀𝑥 ∈ {𝐵} ¬ 𝑥𝑅𝐵 ↔ ¬ 𝐵𝑅𝐵))
1814, 17bitrd 282 . . 3 (𝐵𝐴 → (∃𝑦 ∈ {𝐵} {𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅ ↔ ¬ 𝐵𝑅𝐵))
1918adantl 485 . 2 ((𝑅 Fr 𝐴𝐵𝐴) → (∃𝑦 ∈ {𝐵} {𝑥 ∈ {𝐵} ∣ 𝑥𝑅𝑦} = ∅ ↔ ¬ 𝐵𝑅𝐵))
208, 19mpbid 235 1 ((𝑅 Fr 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  {crab 3110  wss 3881  c0 4243  {csn 4525   class class class wbr 5030   Fr wfr 5475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-fr 5478
This theorem is referenced by:  efrirr  5500  predfrirr  6145  dfwe2  7476  bnj1417  32423  efrunt  33052  ifr0  41154
  Copyright terms: Public domain W3C validator