Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmfsupp2 Structured version   Visualization version   GIF version

Theorem rmfsupp2 33248
Description: A mapping of a multiplication of a constant with a function into a ring is finitely supported if the function is finitely supported. (Contributed by Thierry Arnoux, 3-Jun-2023.)
Hypotheses
Ref Expression
rmfsuppf2.r 𝑅 = (Base‘𝑀)
rmfsupp2.m (𝜑𝑀 ∈ Ring)
rmfsupp2.v (𝜑𝑉𝑋)
rmfsupp2.c ((𝜑𝑣𝑉) → 𝐶𝑅)
rmfsupp2.a (𝜑𝐴:𝑉𝑅)
rmfsupp2.1 (𝜑𝐴 finSupp (0g𝑀))
Assertion
Ref Expression
rmfsupp2 (𝜑 → (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) finSupp (0g𝑀))
Distinct variable groups:   𝑣,𝐴   𝑣,𝑀   𝑣,𝑅   𝑣,𝑉   𝜑,𝑣
Allowed substitution hints:   𝐶(𝑣)   𝑋(𝑣)

Proof of Theorem rmfsupp2
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 funmpt 6527 . . 3 Fun (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))
21a1i 11 . 2 (𝜑 → Fun (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)))
3 rmfsupp2.v . . . . 5 (𝜑𝑉𝑋)
43mptexd 7167 . . . 4 (𝜑 → (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∈ V)
5 rmfsupp2.m . . . . 5 (𝜑𝑀 ∈ Ring)
6 ringgrp 20164 . . . . 5 (𝑀 ∈ Ring → 𝑀 ∈ Grp)
7 rmfsuppf2.r . . . . . 6 𝑅 = (Base‘𝑀)
8 eqid 2733 . . . . . 6 (0g𝑀) = (0g𝑀)
97, 8grpidcl 18886 . . . . 5 (𝑀 ∈ Grp → (0g𝑀) ∈ 𝑅)
105, 6, 93syl 18 . . . 4 (𝜑 → (0g𝑀) ∈ 𝑅)
11 suppval1 8105 . . . 4 ((Fun (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∧ (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∈ V ∧ (0g𝑀) ∈ 𝑅) → ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) supp (0g𝑀)) = {𝑢 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))‘𝑢) ≠ (0g𝑀)})
122, 4, 10, 11syl3anc 1373 . . 3 (𝜑 → ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) supp (0g𝑀)) = {𝑢 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))‘𝑢) ≠ (0g𝑀)})
13 ovex 7388 . . . . . . 7 ((𝐴𝑣)(.r𝑀)𝐶) ∈ V
14 eqid 2733 . . . . . . 7 (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) = (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))
1513, 14dmmpti 6633 . . . . . 6 dom (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) = 𝑉
1615a1i 11 . . . . 5 (𝜑 → dom (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) = 𝑉)
17 ovex 7388 . . . . . . . . 9 ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) ∈ V
18 nfcv 2895 . . . . . . . . . 10 𝑣𝑢
19 nfcv 2895 . . . . . . . . . . 11 𝑣(𝐴𝑢)
20 nfcv 2895 . . . . . . . . . . 11 𝑣(.r𝑀)
21 nfcsb1v 3870 . . . . . . . . . . 11 𝑣𝑢 / 𝑣𝐶
2219, 20, 21nfov 7385 . . . . . . . . . 10 𝑣((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶)
23 fveq2 6831 . . . . . . . . . . 11 (𝑣 = 𝑢 → (𝐴𝑣) = (𝐴𝑢))
24 csbeq1a 3860 . . . . . . . . . . 11 (𝑣 = 𝑢𝐶 = 𝑢 / 𝑣𝐶)
2523, 24oveq12d 7373 . . . . . . . . . 10 (𝑣 = 𝑢 → ((𝐴𝑣)(.r𝑀)𝐶) = ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶))
2618, 22, 25, 14fvmptf 6959 . . . . . . . . 9 ((𝑢𝑉 ∧ ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) ∈ V) → ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))‘𝑢) = ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶))
2717, 26mpan2 691 . . . . . . . 8 (𝑢𝑉 → ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))‘𝑢) = ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶))
2827, 15eleq2s 2851 . . . . . . 7 (𝑢 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) → ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))‘𝑢) = ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶))
2928adantl 481 . . . . . 6 ((𝜑𝑢 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))) → ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))‘𝑢) = ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶))
3029neeq1d 2988 . . . . 5 ((𝜑𝑢 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))) → (((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))‘𝑢) ≠ (0g𝑀) ↔ ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) ≠ (0g𝑀)))
3116, 30rabeqbidva 3412 . . . 4 (𝜑 → {𝑢 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))‘𝑢) ≠ (0g𝑀)} = {𝑢𝑉 ∣ ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) ≠ (0g𝑀)})
32 rmfsupp2.a . . . . . . . 8 (𝜑𝐴:𝑉𝑅)
3332fdmd 6669 . . . . . . 7 (𝜑 → dom 𝐴 = 𝑉)
3433rabeqdv 3411 . . . . . 6 (𝜑 → {𝑢 ∈ dom 𝐴 ∣ (𝐴𝑢) ≠ (0g𝑀)} = {𝑢𝑉 ∣ (𝐴𝑢) ≠ (0g𝑀)})
3532ffund 6663 . . . . . . . 8 (𝜑 → Fun 𝐴)
367fvexi 6845 . . . . . . . . . . 11 𝑅 ∈ V
3736a1i 11 . . . . . . . . . 10 (𝜑𝑅 ∈ V)
3837, 3elmapd 8773 . . . . . . . . 9 (𝜑 → (𝐴 ∈ (𝑅m 𝑉) ↔ 𝐴:𝑉𝑅))
3932, 38mpbird 257 . . . . . . . 8 (𝜑𝐴 ∈ (𝑅m 𝑉))
40 suppval1 8105 . . . . . . . 8 ((Fun 𝐴𝐴 ∈ (𝑅m 𝑉) ∧ (0g𝑀) ∈ 𝑅) → (𝐴 supp (0g𝑀)) = {𝑢 ∈ dom 𝐴 ∣ (𝐴𝑢) ≠ (0g𝑀)})
4135, 39, 10, 40syl3anc 1373 . . . . . . 7 (𝜑 → (𝐴 supp (0g𝑀)) = {𝑢 ∈ dom 𝐴 ∣ (𝐴𝑢) ≠ (0g𝑀)})
42 rmfsupp2.1 . . . . . . . 8 (𝜑𝐴 finSupp (0g𝑀))
4342fsuppimpd 9264 . . . . . . 7 (𝜑 → (𝐴 supp (0g𝑀)) ∈ Fin)
4441, 43eqeltrrd 2834 . . . . . 6 (𝜑 → {𝑢 ∈ dom 𝐴 ∣ (𝐴𝑢) ≠ (0g𝑀)} ∈ Fin)
4534, 44eqeltrrd 2834 . . . . 5 (𝜑 → {𝑢𝑉 ∣ (𝐴𝑢) ≠ (0g𝑀)} ∈ Fin)
46 simpr 484 . . . . . . . . . 10 (((𝜑𝑢𝑉) ∧ (𝐴𝑢) = (0g𝑀)) → (𝐴𝑢) = (0g𝑀))
4746oveq1d 7370 . . . . . . . . 9 (((𝜑𝑢𝑉) ∧ (𝐴𝑢) = (0g𝑀)) → ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) = ((0g𝑀)(.r𝑀)𝑢 / 𝑣𝐶))
485ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑢𝑉) ∧ (𝐴𝑢) = (0g𝑀)) → 𝑀 ∈ Ring)
49 simplr 768 . . . . . . . . . . 11 (((𝜑𝑢𝑉) ∧ (𝐴𝑢) = (0g𝑀)) → 𝑢𝑉)
50 rmfsupp2.c . . . . . . . . . . . . 13 ((𝜑𝑣𝑉) → 𝐶𝑅)
5150ralrimiva 3125 . . . . . . . . . . . 12 (𝜑 → ∀𝑣𝑉 𝐶𝑅)
5251ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑢𝑉) ∧ (𝐴𝑢) = (0g𝑀)) → ∀𝑣𝑉 𝐶𝑅)
53 rspcsbela 4387 . . . . . . . . . . 11 ((𝑢𝑉 ∧ ∀𝑣𝑉 𝐶𝑅) → 𝑢 / 𝑣𝐶𝑅)
5449, 52, 53syl2anc 584 . . . . . . . . . 10 (((𝜑𝑢𝑉) ∧ (𝐴𝑢) = (0g𝑀)) → 𝑢 / 𝑣𝐶𝑅)
55 eqid 2733 . . . . . . . . . . 11 (.r𝑀) = (.r𝑀)
567, 55, 8ringlz 20219 . . . . . . . . . 10 ((𝑀 ∈ Ring ∧ 𝑢 / 𝑣𝐶𝑅) → ((0g𝑀)(.r𝑀)𝑢 / 𝑣𝐶) = (0g𝑀))
5748, 54, 56syl2anc 584 . . . . . . . . 9 (((𝜑𝑢𝑉) ∧ (𝐴𝑢) = (0g𝑀)) → ((0g𝑀)(.r𝑀)𝑢 / 𝑣𝐶) = (0g𝑀))
5847, 57eqtrd 2768 . . . . . . . 8 (((𝜑𝑢𝑉) ∧ (𝐴𝑢) = (0g𝑀)) → ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) = (0g𝑀))
5958ex 412 . . . . . . 7 ((𝜑𝑢𝑉) → ((𝐴𝑢) = (0g𝑀) → ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) = (0g𝑀)))
6059necon3d 2950 . . . . . 6 ((𝜑𝑢𝑉) → (((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) ≠ (0g𝑀) → (𝐴𝑢) ≠ (0g𝑀)))
6160ss2rabdv 4024 . . . . 5 (𝜑 → {𝑢𝑉 ∣ ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) ≠ (0g𝑀)} ⊆ {𝑢𝑉 ∣ (𝐴𝑢) ≠ (0g𝑀)})
62 ssfi 9093 . . . . 5 (({𝑢𝑉 ∣ (𝐴𝑢) ≠ (0g𝑀)} ∈ Fin ∧ {𝑢𝑉 ∣ ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) ≠ (0g𝑀)} ⊆ {𝑢𝑉 ∣ (𝐴𝑢) ≠ (0g𝑀)}) → {𝑢𝑉 ∣ ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) ≠ (0g𝑀)} ∈ Fin)
6345, 61, 62syl2anc 584 . . . 4 (𝜑 → {𝑢𝑉 ∣ ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) ≠ (0g𝑀)} ∈ Fin)
6431, 63eqeltrd 2833 . . 3 (𝜑 → {𝑢 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))‘𝑢) ≠ (0g𝑀)} ∈ Fin)
6512, 64eqeltrd 2833 . 2 (𝜑 → ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) supp (0g𝑀)) ∈ Fin)
66 isfsupp 9260 . . 3 (((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∈ V ∧ (0g𝑀) ∈ 𝑅) → ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) finSupp (0g𝑀) ↔ (Fun (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∧ ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) supp (0g𝑀)) ∈ Fin)))
674, 10, 66syl2anc 584 . 2 (𝜑 → ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) finSupp (0g𝑀) ↔ (Fun (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∧ ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) supp (0g𝑀)) ∈ Fin)))
682, 65, 67mpbir2and 713 1 (𝜑 → (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) finSupp (0g𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  wral 3048  {crab 3396  Vcvv 3437  csb 3846  wss 3898   class class class wbr 5095  cmpt 5176  dom cdm 5621  Fun wfun 6483  wf 6485  cfv 6489  (class class class)co 7355   supp csupp 8099  m cmap 8759  Fincfn 8879   finSupp cfsupp 9256  Basecbs 17127  .rcmulr 17169  0gc0g 17350  Grpcgrp 18854  Ringcrg 20159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9257  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-plusg 17181  df-0g 17352  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-grp 18857  df-minusg 18858  df-cmn 19702  df-abl 19703  df-mgp 20067  df-rng 20079  df-ur 20108  df-ring 20161
This theorem is referenced by:  evlextv  33635  fedgmullem1  33714
  Copyright terms: Public domain W3C validator