Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmfsupp2 Structured version   Visualization version   GIF version

Theorem rmfsupp2 31492
Description: A mapping of a multiplication of a constant with a function into a ring is finitely supported if the function is finitely supported. (Contributed by Thierry Arnoux, 3-Jun-2023.)
Hypotheses
Ref Expression
rmfsuppf2.r 𝑅 = (Base‘𝑀)
rmfsupp2.m (𝜑𝑀 ∈ Ring)
rmfsupp2.v (𝜑𝑉𝑋)
rmfsupp2.c ((𝜑𝑣𝑉) → 𝐶𝑅)
rmfsupp2.a (𝜑𝐴:𝑉𝑅)
rmfsupp2.1 (𝜑𝐴 finSupp (0g𝑀))
Assertion
Ref Expression
rmfsupp2 (𝜑 → (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) finSupp (0g𝑀))
Distinct variable groups:   𝑣,𝐴   𝑣,𝑀   𝑣,𝑅   𝑣,𝑉   𝜑,𝑣
Allowed substitution hints:   𝐶(𝑣)   𝑋(𝑣)

Proof of Theorem rmfsupp2
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 funmpt 6472 . . 3 Fun (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))
21a1i 11 . 2 (𝜑 → Fun (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)))
3 rmfsupp2.v . . . . 5 (𝜑𝑉𝑋)
43mptexd 7100 . . . 4 (𝜑 → (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∈ V)
5 rmfsupp2.m . . . . 5 (𝜑𝑀 ∈ Ring)
6 ringgrp 19788 . . . . 5 (𝑀 ∈ Ring → 𝑀 ∈ Grp)
7 rmfsuppf2.r . . . . . 6 𝑅 = (Base‘𝑀)
8 eqid 2738 . . . . . 6 (0g𝑀) = (0g𝑀)
97, 8grpidcl 18607 . . . . 5 (𝑀 ∈ Grp → (0g𝑀) ∈ 𝑅)
105, 6, 93syl 18 . . . 4 (𝜑 → (0g𝑀) ∈ 𝑅)
11 suppval1 7983 . . . 4 ((Fun (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∧ (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∈ V ∧ (0g𝑀) ∈ 𝑅) → ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) supp (0g𝑀)) = {𝑢 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))‘𝑢) ≠ (0g𝑀)})
122, 4, 10, 11syl3anc 1370 . . 3 (𝜑 → ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) supp (0g𝑀)) = {𝑢 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))‘𝑢) ≠ (0g𝑀)})
13 ovex 7308 . . . . . . 7 ((𝐴𝑣)(.r𝑀)𝐶) ∈ V
14 eqid 2738 . . . . . . 7 (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) = (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))
1513, 14dmmpti 6577 . . . . . 6 dom (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) = 𝑉
1615a1i 11 . . . . 5 (𝜑 → dom (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) = 𝑉)
17 ovex 7308 . . . . . . . . 9 ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) ∈ V
18 nfcv 2907 . . . . . . . . . 10 𝑣𝑢
19 nfcv 2907 . . . . . . . . . . 11 𝑣(𝐴𝑢)
20 nfcv 2907 . . . . . . . . . . 11 𝑣(.r𝑀)
21 nfcsb1v 3857 . . . . . . . . . . 11 𝑣𝑢 / 𝑣𝐶
2219, 20, 21nfov 7305 . . . . . . . . . 10 𝑣((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶)
23 fveq2 6774 . . . . . . . . . . 11 (𝑣 = 𝑢 → (𝐴𝑣) = (𝐴𝑢))
24 csbeq1a 3846 . . . . . . . . . . 11 (𝑣 = 𝑢𝐶 = 𝑢 / 𝑣𝐶)
2523, 24oveq12d 7293 . . . . . . . . . 10 (𝑣 = 𝑢 → ((𝐴𝑣)(.r𝑀)𝐶) = ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶))
2618, 22, 25, 14fvmptf 6896 . . . . . . . . 9 ((𝑢𝑉 ∧ ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) ∈ V) → ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))‘𝑢) = ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶))
2717, 26mpan2 688 . . . . . . . 8 (𝑢𝑉 → ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))‘𝑢) = ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶))
2827, 15eleq2s 2857 . . . . . . 7 (𝑢 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) → ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))‘𝑢) = ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶))
2928adantl 482 . . . . . 6 ((𝜑𝑢 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))) → ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))‘𝑢) = ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶))
3029neeq1d 3003 . . . . 5 ((𝜑𝑢 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))) → (((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))‘𝑢) ≠ (0g𝑀) ↔ ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) ≠ (0g𝑀)))
3116, 30rabeqbidva 3421 . . . 4 (𝜑 → {𝑢 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))‘𝑢) ≠ (0g𝑀)} = {𝑢𝑉 ∣ ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) ≠ (0g𝑀)})
32 rmfsupp2.a . . . . . . . 8 (𝜑𝐴:𝑉𝑅)
3332fdmd 6611 . . . . . . 7 (𝜑 → dom 𝐴 = 𝑉)
3433rabeqdv 3419 . . . . . 6 (𝜑 → {𝑢 ∈ dom 𝐴 ∣ (𝐴𝑢) ≠ (0g𝑀)} = {𝑢𝑉 ∣ (𝐴𝑢) ≠ (0g𝑀)})
3532ffund 6604 . . . . . . . 8 (𝜑 → Fun 𝐴)
367fvexi 6788 . . . . . . . . . . 11 𝑅 ∈ V
3736a1i 11 . . . . . . . . . 10 (𝜑𝑅 ∈ V)
3837, 3elmapd 8629 . . . . . . . . 9 (𝜑 → (𝐴 ∈ (𝑅m 𝑉) ↔ 𝐴:𝑉𝑅))
3932, 38mpbird 256 . . . . . . . 8 (𝜑𝐴 ∈ (𝑅m 𝑉))
40 suppval1 7983 . . . . . . . 8 ((Fun 𝐴𝐴 ∈ (𝑅m 𝑉) ∧ (0g𝑀) ∈ 𝑅) → (𝐴 supp (0g𝑀)) = {𝑢 ∈ dom 𝐴 ∣ (𝐴𝑢) ≠ (0g𝑀)})
4135, 39, 10, 40syl3anc 1370 . . . . . . 7 (𝜑 → (𝐴 supp (0g𝑀)) = {𝑢 ∈ dom 𝐴 ∣ (𝐴𝑢) ≠ (0g𝑀)})
42 rmfsupp2.1 . . . . . . . 8 (𝜑𝐴 finSupp (0g𝑀))
4342fsuppimpd 9135 . . . . . . 7 (𝜑 → (𝐴 supp (0g𝑀)) ∈ Fin)
4441, 43eqeltrrd 2840 . . . . . 6 (𝜑 → {𝑢 ∈ dom 𝐴 ∣ (𝐴𝑢) ≠ (0g𝑀)} ∈ Fin)
4534, 44eqeltrrd 2840 . . . . 5 (𝜑 → {𝑢𝑉 ∣ (𝐴𝑢) ≠ (0g𝑀)} ∈ Fin)
46 simpr 485 . . . . . . . . . 10 (((𝜑𝑢𝑉) ∧ (𝐴𝑢) = (0g𝑀)) → (𝐴𝑢) = (0g𝑀))
4746oveq1d 7290 . . . . . . . . 9 (((𝜑𝑢𝑉) ∧ (𝐴𝑢) = (0g𝑀)) → ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) = ((0g𝑀)(.r𝑀)𝑢 / 𝑣𝐶))
485ad2antrr 723 . . . . . . . . . 10 (((𝜑𝑢𝑉) ∧ (𝐴𝑢) = (0g𝑀)) → 𝑀 ∈ Ring)
49 simplr 766 . . . . . . . . . . 11 (((𝜑𝑢𝑉) ∧ (𝐴𝑢) = (0g𝑀)) → 𝑢𝑉)
50 rmfsupp2.c . . . . . . . . . . . . 13 ((𝜑𝑣𝑉) → 𝐶𝑅)
5150ralrimiva 3103 . . . . . . . . . . . 12 (𝜑 → ∀𝑣𝑉 𝐶𝑅)
5251ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝑢𝑉) ∧ (𝐴𝑢) = (0g𝑀)) → ∀𝑣𝑉 𝐶𝑅)
53 rspcsbela 4369 . . . . . . . . . . 11 ((𝑢𝑉 ∧ ∀𝑣𝑉 𝐶𝑅) → 𝑢 / 𝑣𝐶𝑅)
5449, 52, 53syl2anc 584 . . . . . . . . . 10 (((𝜑𝑢𝑉) ∧ (𝐴𝑢) = (0g𝑀)) → 𝑢 / 𝑣𝐶𝑅)
55 eqid 2738 . . . . . . . . . . 11 (.r𝑀) = (.r𝑀)
567, 55, 8ringlz 19826 . . . . . . . . . 10 ((𝑀 ∈ Ring ∧ 𝑢 / 𝑣𝐶𝑅) → ((0g𝑀)(.r𝑀)𝑢 / 𝑣𝐶) = (0g𝑀))
5748, 54, 56syl2anc 584 . . . . . . . . 9 (((𝜑𝑢𝑉) ∧ (𝐴𝑢) = (0g𝑀)) → ((0g𝑀)(.r𝑀)𝑢 / 𝑣𝐶) = (0g𝑀))
5847, 57eqtrd 2778 . . . . . . . 8 (((𝜑𝑢𝑉) ∧ (𝐴𝑢) = (0g𝑀)) → ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) = (0g𝑀))
5958ex 413 . . . . . . 7 ((𝜑𝑢𝑉) → ((𝐴𝑢) = (0g𝑀) → ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) = (0g𝑀)))
6059necon3d 2964 . . . . . 6 ((𝜑𝑢𝑉) → (((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) ≠ (0g𝑀) → (𝐴𝑢) ≠ (0g𝑀)))
6160ss2rabdv 4009 . . . . 5 (𝜑 → {𝑢𝑉 ∣ ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) ≠ (0g𝑀)} ⊆ {𝑢𝑉 ∣ (𝐴𝑢) ≠ (0g𝑀)})
62 ssfi 8956 . . . . 5 (({𝑢𝑉 ∣ (𝐴𝑢) ≠ (0g𝑀)} ∈ Fin ∧ {𝑢𝑉 ∣ ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) ≠ (0g𝑀)} ⊆ {𝑢𝑉 ∣ (𝐴𝑢) ≠ (0g𝑀)}) → {𝑢𝑉 ∣ ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) ≠ (0g𝑀)} ∈ Fin)
6345, 61, 62syl2anc 584 . . . 4 (𝜑 → {𝑢𝑉 ∣ ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) ≠ (0g𝑀)} ∈ Fin)
6431, 63eqeltrd 2839 . . 3 (𝜑 → {𝑢 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))‘𝑢) ≠ (0g𝑀)} ∈ Fin)
6512, 64eqeltrd 2839 . 2 (𝜑 → ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) supp (0g𝑀)) ∈ Fin)
66 isfsupp 9132 . . 3 (((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∈ V ∧ (0g𝑀) ∈ 𝑅) → ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) finSupp (0g𝑀) ↔ (Fun (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∧ ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) supp (0g𝑀)) ∈ Fin)))
674, 10, 66syl2anc 584 . 2 (𝜑 → ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) finSupp (0g𝑀) ↔ (Fun (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∧ ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) supp (0g𝑀)) ∈ Fin)))
682, 65, 67mpbir2and 710 1 (𝜑 → (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) finSupp (0g𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  {crab 3068  Vcvv 3432  csb 3832  wss 3887   class class class wbr 5074  cmpt 5157  dom cdm 5589  Fun wfun 6427  wf 6429  cfv 6433  (class class class)co 7275   supp csupp 7977  m cmap 8615  Fincfn 8733   finSupp cfsupp 9128  Basecbs 16912  .rcmulr 16963  0gc0g 17150  Grpcgrp 18577  Ringcrg 19783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-mgp 19721  df-ring 19785
This theorem is referenced by:  fedgmullem1  31710
  Copyright terms: Public domain W3C validator