Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmfsupp2 Structured version   Visualization version   GIF version

Theorem rmfsupp2 32657
Description: A mapping of a multiplication of a constant with a function into a ring is finitely supported if the function is finitely supported. (Contributed by Thierry Arnoux, 3-Jun-2023.)
Hypotheses
Ref Expression
rmfsuppf2.r 𝑅 = (Base‘𝑀)
rmfsupp2.m (𝜑𝑀 ∈ Ring)
rmfsupp2.v (𝜑𝑉𝑋)
rmfsupp2.c ((𝜑𝑣𝑉) → 𝐶𝑅)
rmfsupp2.a (𝜑𝐴:𝑉𝑅)
rmfsupp2.1 (𝜑𝐴 finSupp (0g𝑀))
Assertion
Ref Expression
rmfsupp2 (𝜑 → (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) finSupp (0g𝑀))
Distinct variable groups:   𝑣,𝐴   𝑣,𝑀   𝑣,𝑅   𝑣,𝑉   𝜑,𝑣
Allowed substitution hints:   𝐶(𝑣)   𝑋(𝑣)

Proof of Theorem rmfsupp2
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 funmpt 6585 . . 3 Fun (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))
21a1i 11 . 2 (𝜑 → Fun (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)))
3 rmfsupp2.v . . . . 5 (𝜑𝑉𝑋)
43mptexd 7227 . . . 4 (𝜑 → (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∈ V)
5 rmfsupp2.m . . . . 5 (𝜑𝑀 ∈ Ring)
6 ringgrp 20132 . . . . 5 (𝑀 ∈ Ring → 𝑀 ∈ Grp)
7 rmfsuppf2.r . . . . . 6 𝑅 = (Base‘𝑀)
8 eqid 2730 . . . . . 6 (0g𝑀) = (0g𝑀)
97, 8grpidcl 18886 . . . . 5 (𝑀 ∈ Grp → (0g𝑀) ∈ 𝑅)
105, 6, 93syl 18 . . . 4 (𝜑 → (0g𝑀) ∈ 𝑅)
11 suppval1 8154 . . . 4 ((Fun (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∧ (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∈ V ∧ (0g𝑀) ∈ 𝑅) → ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) supp (0g𝑀)) = {𝑢 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))‘𝑢) ≠ (0g𝑀)})
122, 4, 10, 11syl3anc 1369 . . 3 (𝜑 → ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) supp (0g𝑀)) = {𝑢 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))‘𝑢) ≠ (0g𝑀)})
13 ovex 7444 . . . . . . 7 ((𝐴𝑣)(.r𝑀)𝐶) ∈ V
14 eqid 2730 . . . . . . 7 (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) = (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))
1513, 14dmmpti 6693 . . . . . 6 dom (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) = 𝑉
1615a1i 11 . . . . 5 (𝜑 → dom (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) = 𝑉)
17 ovex 7444 . . . . . . . . 9 ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) ∈ V
18 nfcv 2901 . . . . . . . . . 10 𝑣𝑢
19 nfcv 2901 . . . . . . . . . . 11 𝑣(𝐴𝑢)
20 nfcv 2901 . . . . . . . . . . 11 𝑣(.r𝑀)
21 nfcsb1v 3917 . . . . . . . . . . 11 𝑣𝑢 / 𝑣𝐶
2219, 20, 21nfov 7441 . . . . . . . . . 10 𝑣((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶)
23 fveq2 6890 . . . . . . . . . . 11 (𝑣 = 𝑢 → (𝐴𝑣) = (𝐴𝑢))
24 csbeq1a 3906 . . . . . . . . . . 11 (𝑣 = 𝑢𝐶 = 𝑢 / 𝑣𝐶)
2523, 24oveq12d 7429 . . . . . . . . . 10 (𝑣 = 𝑢 → ((𝐴𝑣)(.r𝑀)𝐶) = ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶))
2618, 22, 25, 14fvmptf 7018 . . . . . . . . 9 ((𝑢𝑉 ∧ ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) ∈ V) → ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))‘𝑢) = ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶))
2717, 26mpan2 687 . . . . . . . 8 (𝑢𝑉 → ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))‘𝑢) = ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶))
2827, 15eleq2s 2849 . . . . . . 7 (𝑢 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) → ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))‘𝑢) = ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶))
2928adantl 480 . . . . . 6 ((𝜑𝑢 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))) → ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))‘𝑢) = ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶))
3029neeq1d 2998 . . . . 5 ((𝜑𝑢 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))) → (((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))‘𝑢) ≠ (0g𝑀) ↔ ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) ≠ (0g𝑀)))
3116, 30rabeqbidva 3446 . . . 4 (𝜑 → {𝑢 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))‘𝑢) ≠ (0g𝑀)} = {𝑢𝑉 ∣ ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) ≠ (0g𝑀)})
32 rmfsupp2.a . . . . . . . 8 (𝜑𝐴:𝑉𝑅)
3332fdmd 6727 . . . . . . 7 (𝜑 → dom 𝐴 = 𝑉)
3433rabeqdv 3445 . . . . . 6 (𝜑 → {𝑢 ∈ dom 𝐴 ∣ (𝐴𝑢) ≠ (0g𝑀)} = {𝑢𝑉 ∣ (𝐴𝑢) ≠ (0g𝑀)})
3532ffund 6720 . . . . . . . 8 (𝜑 → Fun 𝐴)
367fvexi 6904 . . . . . . . . . . 11 𝑅 ∈ V
3736a1i 11 . . . . . . . . . 10 (𝜑𝑅 ∈ V)
3837, 3elmapd 8836 . . . . . . . . 9 (𝜑 → (𝐴 ∈ (𝑅m 𝑉) ↔ 𝐴:𝑉𝑅))
3932, 38mpbird 256 . . . . . . . 8 (𝜑𝐴 ∈ (𝑅m 𝑉))
40 suppval1 8154 . . . . . . . 8 ((Fun 𝐴𝐴 ∈ (𝑅m 𝑉) ∧ (0g𝑀) ∈ 𝑅) → (𝐴 supp (0g𝑀)) = {𝑢 ∈ dom 𝐴 ∣ (𝐴𝑢) ≠ (0g𝑀)})
4135, 39, 10, 40syl3anc 1369 . . . . . . 7 (𝜑 → (𝐴 supp (0g𝑀)) = {𝑢 ∈ dom 𝐴 ∣ (𝐴𝑢) ≠ (0g𝑀)})
42 rmfsupp2.1 . . . . . . . 8 (𝜑𝐴 finSupp (0g𝑀))
4342fsuppimpd 9371 . . . . . . 7 (𝜑 → (𝐴 supp (0g𝑀)) ∈ Fin)
4441, 43eqeltrrd 2832 . . . . . 6 (𝜑 → {𝑢 ∈ dom 𝐴 ∣ (𝐴𝑢) ≠ (0g𝑀)} ∈ Fin)
4534, 44eqeltrrd 2832 . . . . 5 (𝜑 → {𝑢𝑉 ∣ (𝐴𝑢) ≠ (0g𝑀)} ∈ Fin)
46 simpr 483 . . . . . . . . . 10 (((𝜑𝑢𝑉) ∧ (𝐴𝑢) = (0g𝑀)) → (𝐴𝑢) = (0g𝑀))
4746oveq1d 7426 . . . . . . . . 9 (((𝜑𝑢𝑉) ∧ (𝐴𝑢) = (0g𝑀)) → ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) = ((0g𝑀)(.r𝑀)𝑢 / 𝑣𝐶))
485ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑢𝑉) ∧ (𝐴𝑢) = (0g𝑀)) → 𝑀 ∈ Ring)
49 simplr 765 . . . . . . . . . . 11 (((𝜑𝑢𝑉) ∧ (𝐴𝑢) = (0g𝑀)) → 𝑢𝑉)
50 rmfsupp2.c . . . . . . . . . . . . 13 ((𝜑𝑣𝑉) → 𝐶𝑅)
5150ralrimiva 3144 . . . . . . . . . . . 12 (𝜑 → ∀𝑣𝑉 𝐶𝑅)
5251ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝑢𝑉) ∧ (𝐴𝑢) = (0g𝑀)) → ∀𝑣𝑉 𝐶𝑅)
53 rspcsbela 4434 . . . . . . . . . . 11 ((𝑢𝑉 ∧ ∀𝑣𝑉 𝐶𝑅) → 𝑢 / 𝑣𝐶𝑅)
5449, 52, 53syl2anc 582 . . . . . . . . . 10 (((𝜑𝑢𝑉) ∧ (𝐴𝑢) = (0g𝑀)) → 𝑢 / 𝑣𝐶𝑅)
55 eqid 2730 . . . . . . . . . . 11 (.r𝑀) = (.r𝑀)
567, 55, 8ringlz 20181 . . . . . . . . . 10 ((𝑀 ∈ Ring ∧ 𝑢 / 𝑣𝐶𝑅) → ((0g𝑀)(.r𝑀)𝑢 / 𝑣𝐶) = (0g𝑀))
5748, 54, 56syl2anc 582 . . . . . . . . 9 (((𝜑𝑢𝑉) ∧ (𝐴𝑢) = (0g𝑀)) → ((0g𝑀)(.r𝑀)𝑢 / 𝑣𝐶) = (0g𝑀))
5847, 57eqtrd 2770 . . . . . . . 8 (((𝜑𝑢𝑉) ∧ (𝐴𝑢) = (0g𝑀)) → ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) = (0g𝑀))
5958ex 411 . . . . . . 7 ((𝜑𝑢𝑉) → ((𝐴𝑢) = (0g𝑀) → ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) = (0g𝑀)))
6059necon3d 2959 . . . . . 6 ((𝜑𝑢𝑉) → (((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) ≠ (0g𝑀) → (𝐴𝑢) ≠ (0g𝑀)))
6160ss2rabdv 4072 . . . . 5 (𝜑 → {𝑢𝑉 ∣ ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) ≠ (0g𝑀)} ⊆ {𝑢𝑉 ∣ (𝐴𝑢) ≠ (0g𝑀)})
62 ssfi 9175 . . . . 5 (({𝑢𝑉 ∣ (𝐴𝑢) ≠ (0g𝑀)} ∈ Fin ∧ {𝑢𝑉 ∣ ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) ≠ (0g𝑀)} ⊆ {𝑢𝑉 ∣ (𝐴𝑢) ≠ (0g𝑀)}) → {𝑢𝑉 ∣ ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) ≠ (0g𝑀)} ∈ Fin)
6345, 61, 62syl2anc 582 . . . 4 (𝜑 → {𝑢𝑉 ∣ ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) ≠ (0g𝑀)} ∈ Fin)
6431, 63eqeltrd 2831 . . 3 (𝜑 → {𝑢 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))‘𝑢) ≠ (0g𝑀)} ∈ Fin)
6512, 64eqeltrd 2831 . 2 (𝜑 → ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) supp (0g𝑀)) ∈ Fin)
66 isfsupp 9367 . . 3 (((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∈ V ∧ (0g𝑀) ∈ 𝑅) → ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) finSupp (0g𝑀) ↔ (Fun (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∧ ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) supp (0g𝑀)) ∈ Fin)))
674, 10, 66syl2anc 582 . 2 (𝜑 → ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) finSupp (0g𝑀) ↔ (Fun (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∧ ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) supp (0g𝑀)) ∈ Fin)))
682, 65, 67mpbir2and 709 1 (𝜑 → (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) finSupp (0g𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1539  wcel 2104  wne 2938  wral 3059  {crab 3430  Vcvv 3472  csb 3892  wss 3947   class class class wbr 5147  cmpt 5230  dom cdm 5675  Fun wfun 6536  wf 6538  cfv 6542  (class class class)co 7411   supp csupp 8148  m cmap 8822  Fincfn 8941   finSupp cfsupp 9363  Basecbs 17148  .rcmulr 17202  0gc0g 17389  Grpcgrp 18855  Ringcrg 20127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-2nd 7978  df-supp 8149  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-plusg 17214  df-0g 17391  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-grp 18858  df-minusg 18859  df-cmn 19691  df-abl 19692  df-mgp 20029  df-rng 20047  df-ur 20076  df-ring 20129
This theorem is referenced by:  fedgmullem1  33002
  Copyright terms: Public domain W3C validator