| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | funmpt 6603 | . . 3
⊢ Fun
(𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)(.r‘𝑀)𝐶)) | 
| 2 | 1 | a1i 11 | . 2
⊢ (𝜑 → Fun (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)(.r‘𝑀)𝐶))) | 
| 3 |  | rmfsupp2.v | . . . . 5
⊢ (𝜑 → 𝑉 ∈ 𝑋) | 
| 4 | 3 | mptexd 7245 | . . . 4
⊢ (𝜑 → (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)(.r‘𝑀)𝐶)) ∈ V) | 
| 5 |  | rmfsupp2.m | . . . . 5
⊢ (𝜑 → 𝑀 ∈ Ring) | 
| 6 |  | ringgrp 20236 | . . . . 5
⊢ (𝑀 ∈ Ring → 𝑀 ∈ Grp) | 
| 7 |  | rmfsuppf2.r | . . . . . 6
⊢ 𝑅 = (Base‘𝑀) | 
| 8 |  | eqid 2736 | . . . . . 6
⊢
(0g‘𝑀) = (0g‘𝑀) | 
| 9 | 7, 8 | grpidcl 18984 | . . . . 5
⊢ (𝑀 ∈ Grp →
(0g‘𝑀)
∈ 𝑅) | 
| 10 | 5, 6, 9 | 3syl 18 | . . . 4
⊢ (𝜑 → (0g‘𝑀) ∈ 𝑅) | 
| 11 |  | suppval1 8192 | . . . 4
⊢ ((Fun
(𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)(.r‘𝑀)𝐶)) ∧ (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)(.r‘𝑀)𝐶)) ∈ V ∧ (0g‘𝑀) ∈ 𝑅) → ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)(.r‘𝑀)𝐶)) supp (0g‘𝑀)) = {𝑢 ∈ dom (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)(.r‘𝑀)𝐶)) ∣ ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)(.r‘𝑀)𝐶))‘𝑢) ≠ (0g‘𝑀)}) | 
| 12 | 2, 4, 10, 11 | syl3anc 1372 | . . 3
⊢ (𝜑 → ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)(.r‘𝑀)𝐶)) supp (0g‘𝑀)) = {𝑢 ∈ dom (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)(.r‘𝑀)𝐶)) ∣ ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)(.r‘𝑀)𝐶))‘𝑢) ≠ (0g‘𝑀)}) | 
| 13 |  | ovex 7465 | . . . . . . 7
⊢ ((𝐴‘𝑣)(.r‘𝑀)𝐶) ∈ V | 
| 14 |  | eqid 2736 | . . . . . . 7
⊢ (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)(.r‘𝑀)𝐶)) = (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)(.r‘𝑀)𝐶)) | 
| 15 | 13, 14 | dmmpti 6711 | . . . . . 6
⊢ dom
(𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)(.r‘𝑀)𝐶)) = 𝑉 | 
| 16 | 15 | a1i 11 | . . . . 5
⊢ (𝜑 → dom (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)(.r‘𝑀)𝐶)) = 𝑉) | 
| 17 |  | ovex 7465 | . . . . . . . . 9
⊢ ((𝐴‘𝑢)(.r‘𝑀)⦋𝑢 / 𝑣⦌𝐶) ∈ V | 
| 18 |  | nfcv 2904 | . . . . . . . . . 10
⊢
Ⅎ𝑣𝑢 | 
| 19 |  | nfcv 2904 | . . . . . . . . . . 11
⊢
Ⅎ𝑣(𝐴‘𝑢) | 
| 20 |  | nfcv 2904 | . . . . . . . . . . 11
⊢
Ⅎ𝑣(.r‘𝑀) | 
| 21 |  | nfcsb1v 3922 | . . . . . . . . . . 11
⊢
Ⅎ𝑣⦋𝑢 / 𝑣⦌𝐶 | 
| 22 | 19, 20, 21 | nfov 7462 | . . . . . . . . . 10
⊢
Ⅎ𝑣((𝐴‘𝑢)(.r‘𝑀)⦋𝑢 / 𝑣⦌𝐶) | 
| 23 |  | fveq2 6905 | . . . . . . . . . . 11
⊢ (𝑣 = 𝑢 → (𝐴‘𝑣) = (𝐴‘𝑢)) | 
| 24 |  | csbeq1a 3912 | . . . . . . . . . . 11
⊢ (𝑣 = 𝑢 → 𝐶 = ⦋𝑢 / 𝑣⦌𝐶) | 
| 25 | 23, 24 | oveq12d 7450 | . . . . . . . . . 10
⊢ (𝑣 = 𝑢 → ((𝐴‘𝑣)(.r‘𝑀)𝐶) = ((𝐴‘𝑢)(.r‘𝑀)⦋𝑢 / 𝑣⦌𝐶)) | 
| 26 | 18, 22, 25, 14 | fvmptf 7036 | . . . . . . . . 9
⊢ ((𝑢 ∈ 𝑉 ∧ ((𝐴‘𝑢)(.r‘𝑀)⦋𝑢 / 𝑣⦌𝐶) ∈ V) → ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)(.r‘𝑀)𝐶))‘𝑢) = ((𝐴‘𝑢)(.r‘𝑀)⦋𝑢 / 𝑣⦌𝐶)) | 
| 27 | 17, 26 | mpan2 691 | . . . . . . . 8
⊢ (𝑢 ∈ 𝑉 → ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)(.r‘𝑀)𝐶))‘𝑢) = ((𝐴‘𝑢)(.r‘𝑀)⦋𝑢 / 𝑣⦌𝐶)) | 
| 28 | 27, 15 | eleq2s 2858 | . . . . . . 7
⊢ (𝑢 ∈ dom (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)(.r‘𝑀)𝐶)) → ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)(.r‘𝑀)𝐶))‘𝑢) = ((𝐴‘𝑢)(.r‘𝑀)⦋𝑢 / 𝑣⦌𝐶)) | 
| 29 | 28 | adantl 481 | . . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ dom (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)(.r‘𝑀)𝐶))) → ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)(.r‘𝑀)𝐶))‘𝑢) = ((𝐴‘𝑢)(.r‘𝑀)⦋𝑢 / 𝑣⦌𝐶)) | 
| 30 | 29 | neeq1d 2999 | . . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ dom (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)(.r‘𝑀)𝐶))) → (((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)(.r‘𝑀)𝐶))‘𝑢) ≠ (0g‘𝑀) ↔ ((𝐴‘𝑢)(.r‘𝑀)⦋𝑢 / 𝑣⦌𝐶) ≠ (0g‘𝑀))) | 
| 31 | 16, 30 | rabeqbidva 3452 | . . . 4
⊢ (𝜑 → {𝑢 ∈ dom (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)(.r‘𝑀)𝐶)) ∣ ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)(.r‘𝑀)𝐶))‘𝑢) ≠ (0g‘𝑀)} = {𝑢 ∈ 𝑉 ∣ ((𝐴‘𝑢)(.r‘𝑀)⦋𝑢 / 𝑣⦌𝐶) ≠ (0g‘𝑀)}) | 
| 32 |  | rmfsupp2.a | . . . . . . . 8
⊢ (𝜑 → 𝐴:𝑉⟶𝑅) | 
| 33 | 32 | fdmd 6745 | . . . . . . 7
⊢ (𝜑 → dom 𝐴 = 𝑉) | 
| 34 | 33 | rabeqdv 3451 | . . . . . 6
⊢ (𝜑 → {𝑢 ∈ dom 𝐴 ∣ (𝐴‘𝑢) ≠ (0g‘𝑀)} = {𝑢 ∈ 𝑉 ∣ (𝐴‘𝑢) ≠ (0g‘𝑀)}) | 
| 35 | 32 | ffund 6739 | . . . . . . . 8
⊢ (𝜑 → Fun 𝐴) | 
| 36 | 7 | fvexi 6919 | . . . . . . . . . . 11
⊢ 𝑅 ∈ V | 
| 37 | 36 | a1i 11 | . . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ V) | 
| 38 | 37, 3 | elmapd 8881 | . . . . . . . . 9
⊢ (𝜑 → (𝐴 ∈ (𝑅 ↑m 𝑉) ↔ 𝐴:𝑉⟶𝑅)) | 
| 39 | 32, 38 | mpbird 257 | . . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ (𝑅 ↑m 𝑉)) | 
| 40 |  | suppval1 8192 | . . . . . . . 8
⊢ ((Fun
𝐴 ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ (0g‘𝑀) ∈ 𝑅) → (𝐴 supp (0g‘𝑀)) = {𝑢 ∈ dom 𝐴 ∣ (𝐴‘𝑢) ≠ (0g‘𝑀)}) | 
| 41 | 35, 39, 10, 40 | syl3anc 1372 | . . . . . . 7
⊢ (𝜑 → (𝐴 supp (0g‘𝑀)) = {𝑢 ∈ dom 𝐴 ∣ (𝐴‘𝑢) ≠ (0g‘𝑀)}) | 
| 42 |  | rmfsupp2.1 | . . . . . . . 8
⊢ (𝜑 → 𝐴 finSupp (0g‘𝑀)) | 
| 43 | 42 | fsuppimpd 9410 | . . . . . . 7
⊢ (𝜑 → (𝐴 supp (0g‘𝑀)) ∈ Fin) | 
| 44 | 41, 43 | eqeltrrd 2841 | . . . . . 6
⊢ (𝜑 → {𝑢 ∈ dom 𝐴 ∣ (𝐴‘𝑢) ≠ (0g‘𝑀)} ∈ Fin) | 
| 45 | 34, 44 | eqeltrrd 2841 | . . . . 5
⊢ (𝜑 → {𝑢 ∈ 𝑉 ∣ (𝐴‘𝑢) ≠ (0g‘𝑀)} ∈ Fin) | 
| 46 |  | simpr 484 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑉) ∧ (𝐴‘𝑢) = (0g‘𝑀)) → (𝐴‘𝑢) = (0g‘𝑀)) | 
| 47 | 46 | oveq1d 7447 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑉) ∧ (𝐴‘𝑢) = (0g‘𝑀)) → ((𝐴‘𝑢)(.r‘𝑀)⦋𝑢 / 𝑣⦌𝐶) = ((0g‘𝑀)(.r‘𝑀)⦋𝑢 / 𝑣⦌𝐶)) | 
| 48 | 5 | ad2antrr 726 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑉) ∧ (𝐴‘𝑢) = (0g‘𝑀)) → 𝑀 ∈ Ring) | 
| 49 |  | simplr 768 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑉) ∧ (𝐴‘𝑢) = (0g‘𝑀)) → 𝑢 ∈ 𝑉) | 
| 50 |  | rmfsupp2.c | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝐶 ∈ 𝑅) | 
| 51 | 50 | ralrimiva 3145 | . . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑣 ∈ 𝑉 𝐶 ∈ 𝑅) | 
| 52 | 51 | ad2antrr 726 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑉) ∧ (𝐴‘𝑢) = (0g‘𝑀)) → ∀𝑣 ∈ 𝑉 𝐶 ∈ 𝑅) | 
| 53 |  | rspcsbela 4437 | . . . . . . . . . . 11
⊢ ((𝑢 ∈ 𝑉 ∧ ∀𝑣 ∈ 𝑉 𝐶 ∈ 𝑅) → ⦋𝑢 / 𝑣⦌𝐶 ∈ 𝑅) | 
| 54 | 49, 52, 53 | syl2anc 584 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑉) ∧ (𝐴‘𝑢) = (0g‘𝑀)) → ⦋𝑢 / 𝑣⦌𝐶 ∈ 𝑅) | 
| 55 |  | eqid 2736 | . . . . . . . . . . 11
⊢
(.r‘𝑀) = (.r‘𝑀) | 
| 56 | 7, 55, 8 | ringlz 20291 | . . . . . . . . . 10
⊢ ((𝑀 ∈ Ring ∧
⦋𝑢 / 𝑣⦌𝐶 ∈ 𝑅) → ((0g‘𝑀)(.r‘𝑀)⦋𝑢 / 𝑣⦌𝐶) = (0g‘𝑀)) | 
| 57 | 48, 54, 56 | syl2anc 584 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑉) ∧ (𝐴‘𝑢) = (0g‘𝑀)) → ((0g‘𝑀)(.r‘𝑀)⦋𝑢 / 𝑣⦌𝐶) = (0g‘𝑀)) | 
| 58 | 47, 57 | eqtrd 2776 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑢 ∈ 𝑉) ∧ (𝐴‘𝑢) = (0g‘𝑀)) → ((𝐴‘𝑢)(.r‘𝑀)⦋𝑢 / 𝑣⦌𝐶) = (0g‘𝑀)) | 
| 59 | 58 | ex 412 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑉) → ((𝐴‘𝑢) = (0g‘𝑀) → ((𝐴‘𝑢)(.r‘𝑀)⦋𝑢 / 𝑣⦌𝐶) = (0g‘𝑀))) | 
| 60 | 59 | necon3d 2960 | . . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑉) → (((𝐴‘𝑢)(.r‘𝑀)⦋𝑢 / 𝑣⦌𝐶) ≠ (0g‘𝑀) → (𝐴‘𝑢) ≠ (0g‘𝑀))) | 
| 61 | 60 | ss2rabdv 4075 | . . . . 5
⊢ (𝜑 → {𝑢 ∈ 𝑉 ∣ ((𝐴‘𝑢)(.r‘𝑀)⦋𝑢 / 𝑣⦌𝐶) ≠ (0g‘𝑀)} ⊆ {𝑢 ∈ 𝑉 ∣ (𝐴‘𝑢) ≠ (0g‘𝑀)}) | 
| 62 |  | ssfi 9214 | . . . . 5
⊢ (({𝑢 ∈ 𝑉 ∣ (𝐴‘𝑢) ≠ (0g‘𝑀)} ∈ Fin ∧ {𝑢 ∈ 𝑉 ∣ ((𝐴‘𝑢)(.r‘𝑀)⦋𝑢 / 𝑣⦌𝐶) ≠ (0g‘𝑀)} ⊆ {𝑢 ∈ 𝑉 ∣ (𝐴‘𝑢) ≠ (0g‘𝑀)}) → {𝑢 ∈ 𝑉 ∣ ((𝐴‘𝑢)(.r‘𝑀)⦋𝑢 / 𝑣⦌𝐶) ≠ (0g‘𝑀)} ∈ Fin) | 
| 63 | 45, 61, 62 | syl2anc 584 | . . . 4
⊢ (𝜑 → {𝑢 ∈ 𝑉 ∣ ((𝐴‘𝑢)(.r‘𝑀)⦋𝑢 / 𝑣⦌𝐶) ≠ (0g‘𝑀)} ∈ Fin) | 
| 64 | 31, 63 | eqeltrd 2840 | . . 3
⊢ (𝜑 → {𝑢 ∈ dom (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)(.r‘𝑀)𝐶)) ∣ ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)(.r‘𝑀)𝐶))‘𝑢) ≠ (0g‘𝑀)} ∈ Fin) | 
| 65 | 12, 64 | eqeltrd 2840 | . 2
⊢ (𝜑 → ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)(.r‘𝑀)𝐶)) supp (0g‘𝑀)) ∈ Fin) | 
| 66 |  | isfsupp 9406 | . . 3
⊢ (((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)(.r‘𝑀)𝐶)) ∈ V ∧ (0g‘𝑀) ∈ 𝑅) → ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)(.r‘𝑀)𝐶)) finSupp (0g‘𝑀) ↔ (Fun (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)(.r‘𝑀)𝐶)) ∧ ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)(.r‘𝑀)𝐶)) supp (0g‘𝑀)) ∈
Fin))) | 
| 67 | 4, 10, 66 | syl2anc 584 | . 2
⊢ (𝜑 → ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)(.r‘𝑀)𝐶)) finSupp (0g‘𝑀) ↔ (Fun (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)(.r‘𝑀)𝐶)) ∧ ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)(.r‘𝑀)𝐶)) supp (0g‘𝑀)) ∈
Fin))) | 
| 68 | 2, 65, 67 | mpbir2and 713 | 1
⊢ (𝜑 → (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)(.r‘𝑀)𝐶)) finSupp (0g‘𝑀)) |