Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmfsupp2 Structured version   Visualization version   GIF version

Theorem rmfsupp2 33243
Description: A mapping of a multiplication of a constant with a function into a ring is finitely supported if the function is finitely supported. (Contributed by Thierry Arnoux, 3-Jun-2023.)
Hypotheses
Ref Expression
rmfsuppf2.r 𝑅 = (Base‘𝑀)
rmfsupp2.m (𝜑𝑀 ∈ Ring)
rmfsupp2.v (𝜑𝑉𝑋)
rmfsupp2.c ((𝜑𝑣𝑉) → 𝐶𝑅)
rmfsupp2.a (𝜑𝐴:𝑉𝑅)
rmfsupp2.1 (𝜑𝐴 finSupp (0g𝑀))
Assertion
Ref Expression
rmfsupp2 (𝜑 → (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) finSupp (0g𝑀))
Distinct variable groups:   𝑣,𝐴   𝑣,𝑀   𝑣,𝑅   𝑣,𝑉   𝜑,𝑣
Allowed substitution hints:   𝐶(𝑣)   𝑋(𝑣)

Proof of Theorem rmfsupp2
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 funmpt 6603 . . 3 Fun (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))
21a1i 11 . 2 (𝜑 → Fun (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)))
3 rmfsupp2.v . . . . 5 (𝜑𝑉𝑋)
43mptexd 7245 . . . 4 (𝜑 → (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∈ V)
5 rmfsupp2.m . . . . 5 (𝜑𝑀 ∈ Ring)
6 ringgrp 20236 . . . . 5 (𝑀 ∈ Ring → 𝑀 ∈ Grp)
7 rmfsuppf2.r . . . . . 6 𝑅 = (Base‘𝑀)
8 eqid 2736 . . . . . 6 (0g𝑀) = (0g𝑀)
97, 8grpidcl 18984 . . . . 5 (𝑀 ∈ Grp → (0g𝑀) ∈ 𝑅)
105, 6, 93syl 18 . . . 4 (𝜑 → (0g𝑀) ∈ 𝑅)
11 suppval1 8192 . . . 4 ((Fun (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∧ (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∈ V ∧ (0g𝑀) ∈ 𝑅) → ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) supp (0g𝑀)) = {𝑢 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))‘𝑢) ≠ (0g𝑀)})
122, 4, 10, 11syl3anc 1372 . . 3 (𝜑 → ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) supp (0g𝑀)) = {𝑢 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))‘𝑢) ≠ (0g𝑀)})
13 ovex 7465 . . . . . . 7 ((𝐴𝑣)(.r𝑀)𝐶) ∈ V
14 eqid 2736 . . . . . . 7 (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) = (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))
1513, 14dmmpti 6711 . . . . . 6 dom (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) = 𝑉
1615a1i 11 . . . . 5 (𝜑 → dom (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) = 𝑉)
17 ovex 7465 . . . . . . . . 9 ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) ∈ V
18 nfcv 2904 . . . . . . . . . 10 𝑣𝑢
19 nfcv 2904 . . . . . . . . . . 11 𝑣(𝐴𝑢)
20 nfcv 2904 . . . . . . . . . . 11 𝑣(.r𝑀)
21 nfcsb1v 3922 . . . . . . . . . . 11 𝑣𝑢 / 𝑣𝐶
2219, 20, 21nfov 7462 . . . . . . . . . 10 𝑣((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶)
23 fveq2 6905 . . . . . . . . . . 11 (𝑣 = 𝑢 → (𝐴𝑣) = (𝐴𝑢))
24 csbeq1a 3912 . . . . . . . . . . 11 (𝑣 = 𝑢𝐶 = 𝑢 / 𝑣𝐶)
2523, 24oveq12d 7450 . . . . . . . . . 10 (𝑣 = 𝑢 → ((𝐴𝑣)(.r𝑀)𝐶) = ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶))
2618, 22, 25, 14fvmptf 7036 . . . . . . . . 9 ((𝑢𝑉 ∧ ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) ∈ V) → ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))‘𝑢) = ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶))
2717, 26mpan2 691 . . . . . . . 8 (𝑢𝑉 → ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))‘𝑢) = ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶))
2827, 15eleq2s 2858 . . . . . . 7 (𝑢 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) → ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))‘𝑢) = ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶))
2928adantl 481 . . . . . 6 ((𝜑𝑢 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))) → ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))‘𝑢) = ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶))
3029neeq1d 2999 . . . . 5 ((𝜑𝑢 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))) → (((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))‘𝑢) ≠ (0g𝑀) ↔ ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) ≠ (0g𝑀)))
3116, 30rabeqbidva 3452 . . . 4 (𝜑 → {𝑢 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))‘𝑢) ≠ (0g𝑀)} = {𝑢𝑉 ∣ ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) ≠ (0g𝑀)})
32 rmfsupp2.a . . . . . . . 8 (𝜑𝐴:𝑉𝑅)
3332fdmd 6745 . . . . . . 7 (𝜑 → dom 𝐴 = 𝑉)
3433rabeqdv 3451 . . . . . 6 (𝜑 → {𝑢 ∈ dom 𝐴 ∣ (𝐴𝑢) ≠ (0g𝑀)} = {𝑢𝑉 ∣ (𝐴𝑢) ≠ (0g𝑀)})
3532ffund 6739 . . . . . . . 8 (𝜑 → Fun 𝐴)
367fvexi 6919 . . . . . . . . . . 11 𝑅 ∈ V
3736a1i 11 . . . . . . . . . 10 (𝜑𝑅 ∈ V)
3837, 3elmapd 8881 . . . . . . . . 9 (𝜑 → (𝐴 ∈ (𝑅m 𝑉) ↔ 𝐴:𝑉𝑅))
3932, 38mpbird 257 . . . . . . . 8 (𝜑𝐴 ∈ (𝑅m 𝑉))
40 suppval1 8192 . . . . . . . 8 ((Fun 𝐴𝐴 ∈ (𝑅m 𝑉) ∧ (0g𝑀) ∈ 𝑅) → (𝐴 supp (0g𝑀)) = {𝑢 ∈ dom 𝐴 ∣ (𝐴𝑢) ≠ (0g𝑀)})
4135, 39, 10, 40syl3anc 1372 . . . . . . 7 (𝜑 → (𝐴 supp (0g𝑀)) = {𝑢 ∈ dom 𝐴 ∣ (𝐴𝑢) ≠ (0g𝑀)})
42 rmfsupp2.1 . . . . . . . 8 (𝜑𝐴 finSupp (0g𝑀))
4342fsuppimpd 9410 . . . . . . 7 (𝜑 → (𝐴 supp (0g𝑀)) ∈ Fin)
4441, 43eqeltrrd 2841 . . . . . 6 (𝜑 → {𝑢 ∈ dom 𝐴 ∣ (𝐴𝑢) ≠ (0g𝑀)} ∈ Fin)
4534, 44eqeltrrd 2841 . . . . 5 (𝜑 → {𝑢𝑉 ∣ (𝐴𝑢) ≠ (0g𝑀)} ∈ Fin)
46 simpr 484 . . . . . . . . . 10 (((𝜑𝑢𝑉) ∧ (𝐴𝑢) = (0g𝑀)) → (𝐴𝑢) = (0g𝑀))
4746oveq1d 7447 . . . . . . . . 9 (((𝜑𝑢𝑉) ∧ (𝐴𝑢) = (0g𝑀)) → ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) = ((0g𝑀)(.r𝑀)𝑢 / 𝑣𝐶))
485ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑢𝑉) ∧ (𝐴𝑢) = (0g𝑀)) → 𝑀 ∈ Ring)
49 simplr 768 . . . . . . . . . . 11 (((𝜑𝑢𝑉) ∧ (𝐴𝑢) = (0g𝑀)) → 𝑢𝑉)
50 rmfsupp2.c . . . . . . . . . . . . 13 ((𝜑𝑣𝑉) → 𝐶𝑅)
5150ralrimiva 3145 . . . . . . . . . . . 12 (𝜑 → ∀𝑣𝑉 𝐶𝑅)
5251ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑢𝑉) ∧ (𝐴𝑢) = (0g𝑀)) → ∀𝑣𝑉 𝐶𝑅)
53 rspcsbela 4437 . . . . . . . . . . 11 ((𝑢𝑉 ∧ ∀𝑣𝑉 𝐶𝑅) → 𝑢 / 𝑣𝐶𝑅)
5449, 52, 53syl2anc 584 . . . . . . . . . 10 (((𝜑𝑢𝑉) ∧ (𝐴𝑢) = (0g𝑀)) → 𝑢 / 𝑣𝐶𝑅)
55 eqid 2736 . . . . . . . . . . 11 (.r𝑀) = (.r𝑀)
567, 55, 8ringlz 20291 . . . . . . . . . 10 ((𝑀 ∈ Ring ∧ 𝑢 / 𝑣𝐶𝑅) → ((0g𝑀)(.r𝑀)𝑢 / 𝑣𝐶) = (0g𝑀))
5748, 54, 56syl2anc 584 . . . . . . . . 9 (((𝜑𝑢𝑉) ∧ (𝐴𝑢) = (0g𝑀)) → ((0g𝑀)(.r𝑀)𝑢 / 𝑣𝐶) = (0g𝑀))
5847, 57eqtrd 2776 . . . . . . . 8 (((𝜑𝑢𝑉) ∧ (𝐴𝑢) = (0g𝑀)) → ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) = (0g𝑀))
5958ex 412 . . . . . . 7 ((𝜑𝑢𝑉) → ((𝐴𝑢) = (0g𝑀) → ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) = (0g𝑀)))
6059necon3d 2960 . . . . . 6 ((𝜑𝑢𝑉) → (((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) ≠ (0g𝑀) → (𝐴𝑢) ≠ (0g𝑀)))
6160ss2rabdv 4075 . . . . 5 (𝜑 → {𝑢𝑉 ∣ ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) ≠ (0g𝑀)} ⊆ {𝑢𝑉 ∣ (𝐴𝑢) ≠ (0g𝑀)})
62 ssfi 9214 . . . . 5 (({𝑢𝑉 ∣ (𝐴𝑢) ≠ (0g𝑀)} ∈ Fin ∧ {𝑢𝑉 ∣ ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) ≠ (0g𝑀)} ⊆ {𝑢𝑉 ∣ (𝐴𝑢) ≠ (0g𝑀)}) → {𝑢𝑉 ∣ ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) ≠ (0g𝑀)} ∈ Fin)
6345, 61, 62syl2anc 584 . . . 4 (𝜑 → {𝑢𝑉 ∣ ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) ≠ (0g𝑀)} ∈ Fin)
6431, 63eqeltrd 2840 . . 3 (𝜑 → {𝑢 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))‘𝑢) ≠ (0g𝑀)} ∈ Fin)
6512, 64eqeltrd 2840 . 2 (𝜑 → ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) supp (0g𝑀)) ∈ Fin)
66 isfsupp 9406 . . 3 (((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∈ V ∧ (0g𝑀) ∈ 𝑅) → ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) finSupp (0g𝑀) ↔ (Fun (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∧ ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) supp (0g𝑀)) ∈ Fin)))
674, 10, 66syl2anc 584 . 2 (𝜑 → ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) finSupp (0g𝑀) ↔ (Fun (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∧ ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) supp (0g𝑀)) ∈ Fin)))
682, 65, 67mpbir2and 713 1 (𝜑 → (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) finSupp (0g𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2939  wral 3060  {crab 3435  Vcvv 3479  csb 3898  wss 3950   class class class wbr 5142  cmpt 5224  dom cdm 5684  Fun wfun 6554  wf 6556  cfv 6560  (class class class)co 7432   supp csupp 8186  m cmap 8867  Fincfn 8986   finSupp cfsupp 9402  Basecbs 17248  .rcmulr 17299  0gc0g 17485  Grpcgrp 18952  Ringcrg 20231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-plusg 17311  df-0g 17487  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-grp 18955  df-minusg 18956  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233
This theorem is referenced by:  fedgmullem1  33681
  Copyright terms: Public domain W3C validator