Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmfsupp2 Structured version   Visualization version   GIF version

Theorem rmfsupp2 33189
Description: A mapping of a multiplication of a constant with a function into a ring is finitely supported if the function is finitely supported. (Contributed by Thierry Arnoux, 3-Jun-2023.)
Hypotheses
Ref Expression
rmfsuppf2.r 𝑅 = (Base‘𝑀)
rmfsupp2.m (𝜑𝑀 ∈ Ring)
rmfsupp2.v (𝜑𝑉𝑋)
rmfsupp2.c ((𝜑𝑣𝑉) → 𝐶𝑅)
rmfsupp2.a (𝜑𝐴:𝑉𝑅)
rmfsupp2.1 (𝜑𝐴 finSupp (0g𝑀))
Assertion
Ref Expression
rmfsupp2 (𝜑 → (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) finSupp (0g𝑀))
Distinct variable groups:   𝑣,𝐴   𝑣,𝑀   𝑣,𝑅   𝑣,𝑉   𝜑,𝑣
Allowed substitution hints:   𝐶(𝑣)   𝑋(𝑣)

Proof of Theorem rmfsupp2
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 funmpt 6554 . . 3 Fun (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))
21a1i 11 . 2 (𝜑 → Fun (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)))
3 rmfsupp2.v . . . . 5 (𝜑𝑉𝑋)
43mptexd 7198 . . . 4 (𝜑 → (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∈ V)
5 rmfsupp2.m . . . . 5 (𝜑𝑀 ∈ Ring)
6 ringgrp 20147 . . . . 5 (𝑀 ∈ Ring → 𝑀 ∈ Grp)
7 rmfsuppf2.r . . . . . 6 𝑅 = (Base‘𝑀)
8 eqid 2729 . . . . . 6 (0g𝑀) = (0g𝑀)
97, 8grpidcl 18897 . . . . 5 (𝑀 ∈ Grp → (0g𝑀) ∈ 𝑅)
105, 6, 93syl 18 . . . 4 (𝜑 → (0g𝑀) ∈ 𝑅)
11 suppval1 8145 . . . 4 ((Fun (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∧ (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∈ V ∧ (0g𝑀) ∈ 𝑅) → ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) supp (0g𝑀)) = {𝑢 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))‘𝑢) ≠ (0g𝑀)})
122, 4, 10, 11syl3anc 1373 . . 3 (𝜑 → ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) supp (0g𝑀)) = {𝑢 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))‘𝑢) ≠ (0g𝑀)})
13 ovex 7420 . . . . . . 7 ((𝐴𝑣)(.r𝑀)𝐶) ∈ V
14 eqid 2729 . . . . . . 7 (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) = (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))
1513, 14dmmpti 6662 . . . . . 6 dom (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) = 𝑉
1615a1i 11 . . . . 5 (𝜑 → dom (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) = 𝑉)
17 ovex 7420 . . . . . . . . 9 ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) ∈ V
18 nfcv 2891 . . . . . . . . . 10 𝑣𝑢
19 nfcv 2891 . . . . . . . . . . 11 𝑣(𝐴𝑢)
20 nfcv 2891 . . . . . . . . . . 11 𝑣(.r𝑀)
21 nfcsb1v 3886 . . . . . . . . . . 11 𝑣𝑢 / 𝑣𝐶
2219, 20, 21nfov 7417 . . . . . . . . . 10 𝑣((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶)
23 fveq2 6858 . . . . . . . . . . 11 (𝑣 = 𝑢 → (𝐴𝑣) = (𝐴𝑢))
24 csbeq1a 3876 . . . . . . . . . . 11 (𝑣 = 𝑢𝐶 = 𝑢 / 𝑣𝐶)
2523, 24oveq12d 7405 . . . . . . . . . 10 (𝑣 = 𝑢 → ((𝐴𝑣)(.r𝑀)𝐶) = ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶))
2618, 22, 25, 14fvmptf 6989 . . . . . . . . 9 ((𝑢𝑉 ∧ ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) ∈ V) → ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))‘𝑢) = ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶))
2717, 26mpan2 691 . . . . . . . 8 (𝑢𝑉 → ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))‘𝑢) = ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶))
2827, 15eleq2s 2846 . . . . . . 7 (𝑢 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) → ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))‘𝑢) = ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶))
2928adantl 481 . . . . . 6 ((𝜑𝑢 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))) → ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))‘𝑢) = ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶))
3029neeq1d 2984 . . . . 5 ((𝜑𝑢 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))) → (((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))‘𝑢) ≠ (0g𝑀) ↔ ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) ≠ (0g𝑀)))
3116, 30rabeqbidva 3422 . . . 4 (𝜑 → {𝑢 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))‘𝑢) ≠ (0g𝑀)} = {𝑢𝑉 ∣ ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) ≠ (0g𝑀)})
32 rmfsupp2.a . . . . . . . 8 (𝜑𝐴:𝑉𝑅)
3332fdmd 6698 . . . . . . 7 (𝜑 → dom 𝐴 = 𝑉)
3433rabeqdv 3421 . . . . . 6 (𝜑 → {𝑢 ∈ dom 𝐴 ∣ (𝐴𝑢) ≠ (0g𝑀)} = {𝑢𝑉 ∣ (𝐴𝑢) ≠ (0g𝑀)})
3532ffund 6692 . . . . . . . 8 (𝜑 → Fun 𝐴)
367fvexi 6872 . . . . . . . . . . 11 𝑅 ∈ V
3736a1i 11 . . . . . . . . . 10 (𝜑𝑅 ∈ V)
3837, 3elmapd 8813 . . . . . . . . 9 (𝜑 → (𝐴 ∈ (𝑅m 𝑉) ↔ 𝐴:𝑉𝑅))
3932, 38mpbird 257 . . . . . . . 8 (𝜑𝐴 ∈ (𝑅m 𝑉))
40 suppval1 8145 . . . . . . . 8 ((Fun 𝐴𝐴 ∈ (𝑅m 𝑉) ∧ (0g𝑀) ∈ 𝑅) → (𝐴 supp (0g𝑀)) = {𝑢 ∈ dom 𝐴 ∣ (𝐴𝑢) ≠ (0g𝑀)})
4135, 39, 10, 40syl3anc 1373 . . . . . . 7 (𝜑 → (𝐴 supp (0g𝑀)) = {𝑢 ∈ dom 𝐴 ∣ (𝐴𝑢) ≠ (0g𝑀)})
42 rmfsupp2.1 . . . . . . . 8 (𝜑𝐴 finSupp (0g𝑀))
4342fsuppimpd 9320 . . . . . . 7 (𝜑 → (𝐴 supp (0g𝑀)) ∈ Fin)
4441, 43eqeltrrd 2829 . . . . . 6 (𝜑 → {𝑢 ∈ dom 𝐴 ∣ (𝐴𝑢) ≠ (0g𝑀)} ∈ Fin)
4534, 44eqeltrrd 2829 . . . . 5 (𝜑 → {𝑢𝑉 ∣ (𝐴𝑢) ≠ (0g𝑀)} ∈ Fin)
46 simpr 484 . . . . . . . . . 10 (((𝜑𝑢𝑉) ∧ (𝐴𝑢) = (0g𝑀)) → (𝐴𝑢) = (0g𝑀))
4746oveq1d 7402 . . . . . . . . 9 (((𝜑𝑢𝑉) ∧ (𝐴𝑢) = (0g𝑀)) → ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) = ((0g𝑀)(.r𝑀)𝑢 / 𝑣𝐶))
485ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑢𝑉) ∧ (𝐴𝑢) = (0g𝑀)) → 𝑀 ∈ Ring)
49 simplr 768 . . . . . . . . . . 11 (((𝜑𝑢𝑉) ∧ (𝐴𝑢) = (0g𝑀)) → 𝑢𝑉)
50 rmfsupp2.c . . . . . . . . . . . . 13 ((𝜑𝑣𝑉) → 𝐶𝑅)
5150ralrimiva 3125 . . . . . . . . . . . 12 (𝜑 → ∀𝑣𝑉 𝐶𝑅)
5251ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑢𝑉) ∧ (𝐴𝑢) = (0g𝑀)) → ∀𝑣𝑉 𝐶𝑅)
53 rspcsbela 4401 . . . . . . . . . . 11 ((𝑢𝑉 ∧ ∀𝑣𝑉 𝐶𝑅) → 𝑢 / 𝑣𝐶𝑅)
5449, 52, 53syl2anc 584 . . . . . . . . . 10 (((𝜑𝑢𝑉) ∧ (𝐴𝑢) = (0g𝑀)) → 𝑢 / 𝑣𝐶𝑅)
55 eqid 2729 . . . . . . . . . . 11 (.r𝑀) = (.r𝑀)
567, 55, 8ringlz 20202 . . . . . . . . . 10 ((𝑀 ∈ Ring ∧ 𝑢 / 𝑣𝐶𝑅) → ((0g𝑀)(.r𝑀)𝑢 / 𝑣𝐶) = (0g𝑀))
5748, 54, 56syl2anc 584 . . . . . . . . 9 (((𝜑𝑢𝑉) ∧ (𝐴𝑢) = (0g𝑀)) → ((0g𝑀)(.r𝑀)𝑢 / 𝑣𝐶) = (0g𝑀))
5847, 57eqtrd 2764 . . . . . . . 8 (((𝜑𝑢𝑉) ∧ (𝐴𝑢) = (0g𝑀)) → ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) = (0g𝑀))
5958ex 412 . . . . . . 7 ((𝜑𝑢𝑉) → ((𝐴𝑢) = (0g𝑀) → ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) = (0g𝑀)))
6059necon3d 2946 . . . . . 6 ((𝜑𝑢𝑉) → (((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) ≠ (0g𝑀) → (𝐴𝑢) ≠ (0g𝑀)))
6160ss2rabdv 4039 . . . . 5 (𝜑 → {𝑢𝑉 ∣ ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) ≠ (0g𝑀)} ⊆ {𝑢𝑉 ∣ (𝐴𝑢) ≠ (0g𝑀)})
62 ssfi 9137 . . . . 5 (({𝑢𝑉 ∣ (𝐴𝑢) ≠ (0g𝑀)} ∈ Fin ∧ {𝑢𝑉 ∣ ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) ≠ (0g𝑀)} ⊆ {𝑢𝑉 ∣ (𝐴𝑢) ≠ (0g𝑀)}) → {𝑢𝑉 ∣ ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) ≠ (0g𝑀)} ∈ Fin)
6345, 61, 62syl2anc 584 . . . 4 (𝜑 → {𝑢𝑉 ∣ ((𝐴𝑢)(.r𝑀)𝑢 / 𝑣𝐶) ≠ (0g𝑀)} ∈ Fin)
6431, 63eqeltrd 2828 . . 3 (𝜑 → {𝑢 ∈ dom (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∣ ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶))‘𝑢) ≠ (0g𝑀)} ∈ Fin)
6512, 64eqeltrd 2828 . 2 (𝜑 → ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) supp (0g𝑀)) ∈ Fin)
66 isfsupp 9316 . . 3 (((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∈ V ∧ (0g𝑀) ∈ 𝑅) → ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) finSupp (0g𝑀) ↔ (Fun (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∧ ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) supp (0g𝑀)) ∈ Fin)))
674, 10, 66syl2anc 584 . 2 (𝜑 → ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) finSupp (0g𝑀) ↔ (Fun (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) ∧ ((𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) supp (0g𝑀)) ∈ Fin)))
682, 65, 67mpbir2and 713 1 (𝜑 → (𝑣𝑉 ↦ ((𝐴𝑣)(.r𝑀)𝐶)) finSupp (0g𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3405  Vcvv 3447  csb 3862  wss 3914   class class class wbr 5107  cmpt 5188  dom cdm 5638  Fun wfun 6505  wf 6507  cfv 6511  (class class class)co 7387   supp csupp 8139  m cmap 8799  Fincfn 8918   finSupp cfsupp 9312  Basecbs 17179  .rcmulr 17221  0gc0g 17402  Grpcgrp 18865  Ringcrg 20142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144
This theorem is referenced by:  fedgmullem1  33625
  Copyright terms: Public domain W3C validator