| Step | Hyp | Ref
| Expression |
| 1 | | poimir.0 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 2 | 1 | nnnn0d 12567 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 3 | 1 | nnred 12260 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 4 | 3 | leidd 11808 |
. . . . 5
⊢ (𝜑 → 𝑁 ≤ 𝑁) |
| 5 | 2, 2, 4 | 3jca 1128 |
. . . 4
⊢ (𝜑 → (𝑁 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0
∧ 𝑁 ≤ 𝑁)) |
| 6 | | oveq2 7418 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 0 → (1...𝑘) = (1...0)) |
| 7 | | fz10 13567 |
. . . . . . . . . . . . . . . 16
⊢ (1...0) =
∅ |
| 8 | 6, 7 | eqtrdi 2787 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 0 → (1...𝑘) = ∅) |
| 9 | 8 | oveq2d 7426 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 0 → ((0..^𝐾) ↑m (1...𝑘)) = ((0..^𝐾) ↑m
∅)) |
| 10 | | fzofi 13997 |
. . . . . . . . . . . . . . . 16
⊢
(0..^𝐾) ∈
Fin |
| 11 | | map0e 8901 |
. . . . . . . . . . . . . . . 16
⊢
((0..^𝐾) ∈ Fin
→ ((0..^𝐾)
↑m ∅) = 1o) |
| 12 | 10, 11 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢
((0..^𝐾)
↑m ∅) = 1o |
| 13 | | df1o2 8492 |
. . . . . . . . . . . . . . 15
⊢
1o = {∅} |
| 14 | 12, 13 | eqtri 2759 |
. . . . . . . . . . . . . 14
⊢
((0..^𝐾)
↑m ∅) = {∅} |
| 15 | 9, 14 | eqtrdi 2787 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 0 → ((0..^𝐾) ↑m (1...𝑘)) = {∅}) |
| 16 | | eqidd 2737 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 0 → 𝑓 = 𝑓) |
| 17 | 16, 8, 8 | f1oeq123d 6817 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 0 → (𝑓:(1...𝑘)–1-1-onto→(1...𝑘) ↔ 𝑓:∅–1-1-onto→∅)) |
| 18 | | eqid 2736 |
. . . . . . . . . . . . . . . . 17
⊢ ∅ =
∅ |
| 19 | | f1o00 6858 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓:∅–1-1-onto→∅ ↔ (𝑓 = ∅ ∧ ∅ =
∅)) |
| 20 | 18, 19 | mpbiran2 710 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓:∅–1-1-onto→∅ ↔ 𝑓 = ∅) |
| 21 | 17, 20 | bitrdi 287 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 0 → (𝑓:(1...𝑘)–1-1-onto→(1...𝑘) ↔ 𝑓 = ∅)) |
| 22 | 21 | abbidv 2802 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 0 → {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)} = {𝑓 ∣ 𝑓 = ∅}) |
| 23 | | df-sn 4607 |
. . . . . . . . . . . . . 14
⊢ {∅}
= {𝑓 ∣ 𝑓 = ∅} |
| 24 | 22, 23 | eqtr4di 2789 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 0 → {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)} = {∅}) |
| 25 | 15, 24 | xpeq12d 5690 |
. . . . . . . . . . . 12
⊢ (𝑘 = 0 → (((0..^𝐾) ↑m (1...𝑘)) × {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) = ({∅} ×
{∅})) |
| 26 | | 0ex 5282 |
. . . . . . . . . . . . 13
⊢ ∅
∈ V |
| 27 | 26, 26 | xpsn 7136 |
. . . . . . . . . . . 12
⊢
({∅} × {∅}) = {〈∅,
∅〉} |
| 28 | 25, 27 | eqtr2di 2788 |
. . . . . . . . . . 11
⊢ (𝑘 = 0 → {〈∅,
∅〉} = (((0..^𝐾)
↑m (1...𝑘))
× {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)})) |
| 29 | | elsni 4623 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 ∈ {〈∅,
∅〉} → 𝑠 =
〈∅, ∅〉) |
| 30 | 26, 26 | op1std 8003 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 = 〈∅, ∅〉
→ (1st ‘𝑠) = ∅) |
| 31 | 29, 30 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑠 ∈ {〈∅,
∅〉} → (1st ‘𝑠) = ∅) |
| 32 | 31 | oveq1d 7425 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 ∈ {〈∅,
∅〉} → ((1st ‘𝑠) ∘f + ∅) = (∅
∘f + ∅)) |
| 33 | | f0 6764 |
. . . . . . . . . . . . . . . . . . . 20
⊢
∅:∅⟶∅ |
| 34 | | ffn 6711 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∅:∅⟶∅ → ∅ Fn
∅) |
| 35 | 33, 34 | mp1i 13 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 ∈ {〈∅,
∅〉} → ∅ Fn ∅) |
| 36 | 26 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 ∈ {〈∅,
∅〉} → ∅ ∈ V) |
| 37 | | inidm 4207 |
. . . . . . . . . . . . . . . . . . 19
⊢ (∅
∩ ∅) = ∅ |
| 38 | | 0fv 6925 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∅‘𝑛) =
∅ |
| 39 | 38 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑠 ∈ {〈∅,
∅〉} ∧ 𝑛
∈ ∅) → (∅‘𝑛) = ∅) |
| 40 | 35, 35, 36, 36, 37, 39, 39 | offval 7685 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑠 ∈ {〈∅,
∅〉} → (∅ ∘f + ∅) = (𝑛 ∈ ∅ ↦ (∅
+ ∅))) |
| 41 | | mpt0 6685 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ∅ ↦ (∅
+ ∅)) = ∅ |
| 42 | 40, 41 | eqtrdi 2787 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 ∈ {〈∅,
∅〉} → (∅ ∘f + ∅) =
∅) |
| 43 | 32, 42 | eqtrd 2771 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 ∈ {〈∅,
∅〉} → ((1st ‘𝑠) ∘f + ∅) =
∅) |
| 44 | 43 | uneq1d 4147 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 ∈ {〈∅,
∅〉} → (((1st ‘𝑠) ∘f + ∅) ∪
((1...𝑁) × {0})) =
(∅ ∪ ((1...𝑁)
× {0}))) |
| 45 | | uncom 4138 |
. . . . . . . . . . . . . . . 16
⊢ (∅
∪ ((1...𝑁) ×
{0})) = (((1...𝑁) ×
{0}) ∪ ∅) |
| 46 | | un0 4374 |
. . . . . . . . . . . . . . . 16
⊢
(((1...𝑁) ×
{0}) ∪ ∅) = ((1...𝑁) × {0}) |
| 47 | 45, 46 | eqtri 2759 |
. . . . . . . . . . . . . . 15
⊢ (∅
∪ ((1...𝑁) ×
{0})) = ((1...𝑁) ×
{0}) |
| 48 | 44, 47 | eqtr2di 2788 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈ {〈∅,
∅〉} → ((1...𝑁) × {0}) = (((1st
‘𝑠)
∘f + ∅) ∪ ((1...𝑁) × {0}))) |
| 49 | 48 | csbeq1d 3883 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ {〈∅,
∅〉} → ⦋((1...𝑁) × {0}) / 𝑝⦌𝐵 = ⦋(((1st
‘𝑠)
∘f + ∅) ∪ ((1...𝑁) × {0})) / 𝑝⦌𝐵) |
| 50 | 49 | eqeq2d 2747 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ {〈∅,
∅〉} → (0 = ⦋((1...𝑁) × {0}) / 𝑝⦌𝐵 ↔ 0 = ⦋(((1st
‘𝑠)
∘f + ∅) ∪ ((1...𝑁) × {0})) / 𝑝⦌𝐵)) |
| 51 | | oveq2 7418 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 0 → (0...𝑘) = (0...0)) |
| 52 | | 0z 12604 |
. . . . . . . . . . . . . . . 16
⊢ 0 ∈
ℤ |
| 53 | | fzsn 13588 |
. . . . . . . . . . . . . . . 16
⊢ (0 ∈
ℤ → (0...0) = {0}) |
| 54 | 52, 53 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ (0...0) =
{0} |
| 55 | 51, 54 | eqtrdi 2787 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 0 → (0...𝑘) = {0}) |
| 56 | | oveq2 7418 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = 0 → ((𝑗 + 1)...𝑘) = ((𝑗 + 1)...0)) |
| 57 | 56 | imaeq2d 6052 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = 0 → ((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) = ((2nd ‘𝑠) “ ((𝑗 + 1)...0))) |
| 58 | 57 | xpeq1d 5688 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 0 → (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}) = (((2nd
‘𝑠) “ ((𝑗 + 1)...0)) ×
{0})) |
| 59 | 58 | uneq2d 4148 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 0 → ((((2nd
‘𝑠) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...𝑘)) × {0})) =
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...0)) ×
{0}))) |
| 60 | 59 | oveq2d 7426 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 0 → ((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) = ((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...0)) ×
{0})))) |
| 61 | | oveq1 7417 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = 0 → (𝑘 + 1) = (0 + 1)) |
| 62 | | 0p1e1 12367 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (0 + 1) =
1 |
| 63 | 61, 62 | eqtrdi 2787 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 0 → (𝑘 + 1) = 1) |
| 64 | 63 | oveq1d 7425 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 0 → ((𝑘 + 1)...𝑁) = (1...𝑁)) |
| 65 | 64 | xpeq1d 5688 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 0 → (((𝑘 + 1)...𝑁) × {0}) = ((1...𝑁) × {0})) |
| 66 | 60, 65 | uneq12d 4149 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 0 → (((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) = (((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...0)) × {0}))) ∪
((1...𝑁) ×
{0}))) |
| 67 | 66 | csbeq1d 3883 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 0 →
⦋(((1st ‘𝑠) ∘f + ((((2nd
‘𝑠) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...0)) × {0}))) ∪
((1...𝑁) × {0})) /
𝑝⦌𝐵) |
| 68 | 67 | eqeq2d 2747 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 0 → (𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ 𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...0)) × {0}))) ∪
((1...𝑁) × {0})) /
𝑝⦌𝐵)) |
| 69 | 55, 68 | rexeqbidv 3330 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 0 → (∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ ∃𝑗 ∈ {0}𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...0)) × {0}))) ∪
((1...𝑁) × {0})) /
𝑝⦌𝐵)) |
| 70 | | c0ex 11234 |
. . . . . . . . . . . . . . . 16
⊢ 0 ∈
V |
| 71 | | oveq2 7418 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 = 0 → (1...𝑗) = (1...0)) |
| 72 | 71, 7 | eqtrdi 2787 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 = 0 → (1...𝑗) = ∅) |
| 73 | 72 | imaeq2d 6052 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 = 0 → ((2nd
‘𝑠) “
(1...𝑗)) = ((2nd
‘𝑠) “
∅)) |
| 74 | | ima0 6069 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((2nd ‘𝑠) “ ∅) = ∅ |
| 75 | 73, 74 | eqtrdi 2787 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 = 0 → ((2nd
‘𝑠) “
(1...𝑗)) =
∅) |
| 76 | 75 | xpeq1d 5688 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 = 0 → (((2nd
‘𝑠) “
(1...𝑗)) × {1}) =
(∅ × {1})) |
| 77 | | 0xp 5758 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (∅
× {1}) = ∅ |
| 78 | 76, 77 | eqtrdi 2787 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = 0 → (((2nd
‘𝑠) “
(1...𝑗)) × {1}) =
∅) |
| 79 | | oveq1 7417 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 = 0 → (𝑗 + 1) = (0 + 1)) |
| 80 | 79, 62 | eqtrdi 2787 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑗 = 0 → (𝑗 + 1) = 1) |
| 81 | 80 | oveq1d 7425 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 = 0 → ((𝑗 + 1)...0) = (1...0)) |
| 82 | 81, 7 | eqtrdi 2787 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 = 0 → ((𝑗 + 1)...0) = ∅) |
| 83 | 82 | imaeq2d 6052 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 = 0 → ((2nd
‘𝑠) “ ((𝑗 + 1)...0)) = ((2nd
‘𝑠) “
∅)) |
| 84 | 83, 74 | eqtrdi 2787 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 = 0 → ((2nd
‘𝑠) “ ((𝑗 + 1)...0)) =
∅) |
| 85 | 84 | xpeq1d 5688 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 = 0 → (((2nd
‘𝑠) “ ((𝑗 + 1)...0)) × {0}) =
(∅ × {0})) |
| 86 | | 0xp 5758 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (∅
× {0}) = ∅ |
| 87 | 85, 86 | eqtrdi 2787 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = 0 → (((2nd
‘𝑠) “ ((𝑗 + 1)...0)) × {0}) =
∅) |
| 88 | 78, 87 | uneq12d 4149 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = 0 → ((((2nd
‘𝑠) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...0))
× {0})) = (∅ ∪ ∅)) |
| 89 | | un0 4374 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (∅
∪ ∅) = ∅ |
| 90 | 88, 89 | eqtrdi 2787 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = 0 → ((((2nd
‘𝑠) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...0))
× {0})) = ∅) |
| 91 | 90 | oveq2d 7426 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = 0 → ((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...0)) × {0}))) =
((1st ‘𝑠)
∘f + ∅)) |
| 92 | 91 | uneq1d 4147 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = 0 → (((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...0)) × {0}))) ∪
((1...𝑁) × {0})) =
(((1st ‘𝑠)
∘f + ∅) ∪ ((1...𝑁) × {0}))) |
| 93 | 92 | csbeq1d 3883 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 0 →
⦋(((1st ‘𝑠) ∘f + ((((2nd
‘𝑠) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...0))
× {0}))) ∪ ((1...𝑁) × {0})) / 𝑝⦌𝐵 = ⦋(((1st
‘𝑠)
∘f + ∅) ∪ ((1...𝑁) × {0})) / 𝑝⦌𝐵) |
| 94 | 93 | eqeq2d 2747 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 0 → (𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...0)) × {0}))) ∪
((1...𝑁) × {0})) /
𝑝⦌𝐵 ↔ 𝑖 = ⦋(((1st
‘𝑠)
∘f + ∅) ∪ ((1...𝑁) × {0})) / 𝑝⦌𝐵)) |
| 95 | 70, 94 | rexsn 4663 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑗 ∈
{0}𝑖 =
⦋(((1st ‘𝑠) ∘f + ((((2nd
‘𝑠) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...0))
× {0}))) ∪ ((1...𝑁) × {0})) / 𝑝⦌𝐵 ↔ 𝑖 = ⦋(((1st
‘𝑠)
∘f + ∅) ∪ ((1...𝑁) × {0})) / 𝑝⦌𝐵) |
| 96 | 69, 95 | bitrdi 287 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 0 → (∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ 𝑖 = ⦋(((1st
‘𝑠)
∘f + ∅) ∪ ((1...𝑁) × {0})) / 𝑝⦌𝐵)) |
| 97 | 55, 96 | raleqbidv 3329 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 0 → (∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ ∀𝑖 ∈ {0}𝑖 = ⦋(((1st
‘𝑠)
∘f + ∅) ∪ ((1...𝑁) × {0})) / 𝑝⦌𝐵)) |
| 98 | | eqeq1 2740 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 0 → (𝑖 = ⦋(((1st
‘𝑠)
∘f + ∅) ∪ ((1...𝑁) × {0})) / 𝑝⦌𝐵 ↔ 0 = ⦋(((1st
‘𝑠)
∘f + ∅) ∪ ((1...𝑁) × {0})) / 𝑝⦌𝐵)) |
| 99 | 70, 98 | ralsn 4662 |
. . . . . . . . . . . . 13
⊢
(∀𝑖 ∈
{0}𝑖 =
⦋(((1st ‘𝑠) ∘f + ∅) ∪
((1...𝑁) × {0})) /
𝑝⦌𝐵 ↔ 0 =
⦋(((1st ‘𝑠) ∘f + ∅) ∪
((1...𝑁) × {0})) /
𝑝⦌𝐵) |
| 100 | 97, 99 | bitr2di 288 |
. . . . . . . . . . . 12
⊢ (𝑘 = 0 → (0 =
⦋(((1st ‘𝑠) ∘f + ∅) ∪
((1...𝑁) × {0})) /
𝑝⦌𝐵 ↔ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) |
| 101 | 50, 100 | sylan9bbr 510 |
. . . . . . . . . . 11
⊢ ((𝑘 = 0 ∧ 𝑠 ∈ {〈∅, ∅〉})
→ (0 = ⦋((1...𝑁) × {0}) / 𝑝⦌𝐵 ↔ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) |
| 102 | 28, 101 | rabeqbidva 3437 |
. . . . . . . . . 10
⊢ (𝑘 = 0 → {𝑠 ∈ {〈∅, ∅〉}
∣ 0 = ⦋((1...𝑁) × {0}) / 𝑝⦌𝐵} = {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑘)) × {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) ∣ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) |
| 103 | 102 | eqcomd 2742 |
. . . . . . . . 9
⊢ (𝑘 = 0 → {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑘)) × {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) ∣ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵} = {𝑠 ∈ {〈∅, ∅〉}
∣ 0 = ⦋((1...𝑁) × {0}) / 𝑝⦌𝐵}) |
| 104 | 103 | fveq2d 6885 |
. . . . . . . 8
⊢ (𝑘 = 0 →
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑘))
× {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) ∣ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) = (♯‘{𝑠 ∈ {〈∅, ∅〉}
∣ 0 = ⦋((1...𝑁) × {0}) / 𝑝⦌𝐵})) |
| 105 | 104 | breq2d 5136 |
. . . . . . 7
⊢ (𝑘 = 0 → (2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑘))
× {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) ∣ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ↔ 2 ∥ (♯‘{𝑠 ∈ {〈∅,
∅〉} ∣ 0 = ⦋((1...𝑁) × {0}) / 𝑝⦌𝐵}))) |
| 106 | 105 | notbid 318 |
. . . . . 6
⊢ (𝑘 = 0 → (¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑘))
× {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) ∣ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ↔ ¬ 2 ∥
(♯‘{𝑠 ∈
{〈∅, ∅〉} ∣ 0 = ⦋((1...𝑁) × {0}) / 𝑝⦌𝐵}))) |
| 107 | 106 | imbi2d 340 |
. . . . 5
⊢ (𝑘 = 0 → ((𝜑 → ¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑘))
× {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) ∣ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵})) ↔ (𝜑 → ¬ 2 ∥
(♯‘{𝑠 ∈
{〈∅, ∅〉} ∣ 0 = ⦋((1...𝑁) × {0}) / 𝑝⦌𝐵})))) |
| 108 | | oveq2 7418 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑚 → (1...𝑘) = (1...𝑚)) |
| 109 | 108 | oveq2d 7426 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑚 → ((0..^𝐾) ↑m (1...𝑘)) = ((0..^𝐾) ↑m (1...𝑚))) |
| 110 | | eqidd 2737 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑚 → 𝑓 = 𝑓) |
| 111 | 110, 108,
108 | f1oeq123d 6817 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑚 → (𝑓:(1...𝑘)–1-1-onto→(1...𝑘) ↔ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚))) |
| 112 | 111 | abbidv 2802 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑚 → {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)} = {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) |
| 113 | 109, 112 | xpeq12d 5690 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑚 → (((0..^𝐾) ↑m (1...𝑘)) × {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) = (((0..^𝐾) ↑m (1...𝑚)) × {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)})) |
| 114 | | oveq2 7418 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑚 → (0...𝑘) = (0...𝑚)) |
| 115 | | oveq2 7418 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑚 → ((𝑗 + 1)...𝑘) = ((𝑗 + 1)...𝑚)) |
| 116 | 115 | imaeq2d 6052 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑚 → ((2nd ‘𝑠) “ ((𝑗 + 1)...𝑘)) = ((2nd ‘𝑠) “ ((𝑗 + 1)...𝑚))) |
| 117 | 116 | xpeq1d 5688 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑚 → (((2nd ‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}) = (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0})) |
| 118 | 117 | uneq2d 4148 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑚 → ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...𝑘)) × {0})) =
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) |
| 119 | 118 | oveq2d 7426 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑚 → ((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) = ((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0})))) |
| 120 | | oveq1 7417 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑚 → (𝑘 + 1) = (𝑚 + 1)) |
| 121 | 120 | oveq1d 7425 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑚 → ((𝑘 + 1)...𝑁) = ((𝑚 + 1)...𝑁)) |
| 122 | 121 | xpeq1d 5688 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑚 → (((𝑘 + 1)...𝑁) × {0}) = (((𝑚 + 1)...𝑁) × {0})) |
| 123 | 119, 122 | uneq12d 4149 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑚 → (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) = (((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0}))) |
| 124 | 123 | csbeq1d 3883 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑚 → ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵) |
| 125 | 124 | eqeq2d 2747 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑚 → (𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ 𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) |
| 126 | 114, 125 | rexeqbidv 3330 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑚 → (∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ ∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) |
| 127 | 114, 126 | raleqbidv 3329 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑚 → (∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) |
| 128 | 113, 127 | rabeqbidv 3439 |
. . . . . . . . 9
⊢ (𝑘 = 𝑚 → {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑘)) × {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) ∣ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵} = {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑚)) × {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∣ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) |
| 129 | 128 | fveq2d 6885 |
. . . . . . . 8
⊢ (𝑘 = 𝑚 → (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑘)) × {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) ∣ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) = (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑚)) × {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∣ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵})) |
| 130 | 129 | breq2d 5136 |
. . . . . . 7
⊢ (𝑘 = 𝑚 → (2 ∥ (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑘)) × {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) ∣ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ↔ 2 ∥ (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑚)) × {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∣ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}))) |
| 131 | 130 | notbid 318 |
. . . . . 6
⊢ (𝑘 = 𝑚 → (¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑘))
× {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) ∣ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ↔ ¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑚))
× {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∣ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}))) |
| 132 | 131 | imbi2d 340 |
. . . . 5
⊢ (𝑘 = 𝑚 → ((𝜑 → ¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑘))
× {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) ∣ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵})) ↔ (𝜑 → ¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑚))
× {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∣ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵})))) |
| 133 | | oveq2 7418 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑚 + 1) → (1...𝑘) = (1...(𝑚 + 1))) |
| 134 | 133 | oveq2d 7426 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑚 + 1) → ((0..^𝐾) ↑m (1...𝑘)) = ((0..^𝐾) ↑m (1...(𝑚 + 1)))) |
| 135 | | eqidd 2737 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑚 + 1) → 𝑓 = 𝑓) |
| 136 | 135, 133,
133 | f1oeq123d 6817 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑚 + 1) → (𝑓:(1...𝑘)–1-1-onto→(1...𝑘) ↔ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1)))) |
| 137 | 136 | abbidv 2802 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑚 + 1) → {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)} = {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) |
| 138 | 134, 137 | xpeq12d 5690 |
. . . . . . . . . 10
⊢ (𝑘 = (𝑚 + 1) → (((0..^𝐾) ↑m (1...𝑘)) × {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) = (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))})) |
| 139 | | oveq2 7418 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑚 + 1) → (0...𝑘) = (0...(𝑚 + 1))) |
| 140 | | oveq2 7418 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = (𝑚 + 1) → ((𝑗 + 1)...𝑘) = ((𝑗 + 1)...(𝑚 + 1))) |
| 141 | 140 | imaeq2d 6052 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = (𝑚 + 1) → ((2nd ‘𝑠) “ ((𝑗 + 1)...𝑘)) = ((2nd ‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1)))) |
| 142 | 141 | xpeq1d 5688 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = (𝑚 + 1) → (((2nd ‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}) = (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0})) |
| 143 | 142 | uneq2d 4148 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = (𝑚 + 1) → ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...𝑘)) × {0})) =
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) |
| 144 | 143 | oveq2d 7426 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = (𝑚 + 1) → ((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) = ((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0})))) |
| 145 | | oveq1 7417 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = (𝑚 + 1) → (𝑘 + 1) = ((𝑚 + 1) + 1)) |
| 146 | 145 | oveq1d 7425 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = (𝑚 + 1) → ((𝑘 + 1)...𝑁) = (((𝑚 + 1) + 1)...𝑁)) |
| 147 | 146 | xpeq1d 5688 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = (𝑚 + 1) → (((𝑘 + 1)...𝑁) × {0}) = ((((𝑚 + 1) + 1)...𝑁) × {0})) |
| 148 | 144, 147 | uneq12d 4149 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (𝑚 + 1) → (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) = (((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))) |
| 149 | 148 | csbeq1d 3883 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑚 + 1) → ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵) |
| 150 | 149 | eqeq2d 2747 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑚 + 1) → (𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ 𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) |
| 151 | 139, 150 | rexeqbidv 3330 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑚 + 1) → (∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ ∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) |
| 152 | 139, 151 | raleqbidv 3329 |
. . . . . . . . . 10
⊢ (𝑘 = (𝑚 + 1) → (∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) |
| 153 | 138, 152 | rabeqbidv 3439 |
. . . . . . . . 9
⊢ (𝑘 = (𝑚 + 1) → {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑘)) × {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) ∣ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵} = {𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) |
| 154 | 153 | fveq2d 6885 |
. . . . . . . 8
⊢ (𝑘 = (𝑚 + 1) → (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑘)) × {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) ∣ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) = (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵})) |
| 155 | 154 | breq2d 5136 |
. . . . . . 7
⊢ (𝑘 = (𝑚 + 1) → (2 ∥ (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑘)) × {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) ∣ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ↔ 2 ∥ (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}))) |
| 156 | 155 | notbid 318 |
. . . . . 6
⊢ (𝑘 = (𝑚 + 1) → (¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑘))
× {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) ∣ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ↔ ¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}))) |
| 157 | 156 | imbi2d 340 |
. . . . 5
⊢ (𝑘 = (𝑚 + 1) → ((𝜑 → ¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑘))
× {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) ∣ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵})) ↔ (𝜑 → ¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵})))) |
| 158 | | oveq2 7418 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑁 → (1...𝑘) = (1...𝑁)) |
| 159 | 158 | oveq2d 7426 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑁 → ((0..^𝐾) ↑m (1...𝑘)) = ((0..^𝐾) ↑m (1...𝑁))) |
| 160 | | eqidd 2737 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑁 → 𝑓 = 𝑓) |
| 161 | 160, 158,
158 | f1oeq123d 6817 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑁 → (𝑓:(1...𝑘)–1-1-onto→(1...𝑘) ↔ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁))) |
| 162 | 161 | abbidv 2802 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑁 → {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)} = {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) |
| 163 | 159, 162 | xpeq12d 5690 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑁 → (((0..^𝐾) ↑m (1...𝑘)) × {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) = (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
| 164 | | oveq2 7418 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑁 → (0...𝑘) = (0...𝑁)) |
| 165 | | oveq2 7418 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑁 → ((𝑗 + 1)...𝑘) = ((𝑗 + 1)...𝑁)) |
| 166 | 165 | imaeq2d 6052 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑁 → ((2nd ‘𝑠) “ ((𝑗 + 1)...𝑘)) = ((2nd ‘𝑠) “ ((𝑗 + 1)...𝑁))) |
| 167 | 166 | xpeq1d 5688 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑁 → (((2nd ‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}) = (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})) |
| 168 | 167 | uneq2d 4148 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑁 → ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...𝑘)) × {0})) =
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) |
| 169 | 168 | oveq2d 7426 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑁 → ((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) = ((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))) |
| 170 | | oveq1 7417 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑁 → (𝑘 + 1) = (𝑁 + 1)) |
| 171 | 170 | oveq1d 7425 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑁 → ((𝑘 + 1)...𝑁) = ((𝑁 + 1)...𝑁)) |
| 172 | 171 | xpeq1d 5688 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑁 → (((𝑘 + 1)...𝑁) × {0}) = (((𝑁 + 1)...𝑁) × {0})) |
| 173 | 169, 172 | uneq12d 4149 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑁 → (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) = (((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0}))) |
| 174 | 173 | csbeq1d 3883 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑁 → ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) / 𝑝⦌𝐵) |
| 175 | 174 | eqeq2d 2747 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑁 → (𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ 𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) |
| 176 | 164, 175 | rexeqbidv 3330 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑁 → (∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ ∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) |
| 177 | 164, 176 | raleqbidv 3329 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑁 → (∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) |
| 178 | 163, 177 | rabeqbidv 3439 |
. . . . . . . . 9
⊢ (𝑘 = 𝑁 → {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑘)) × {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) ∣ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵} = {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) |
| 179 | 178 | fveq2d 6885 |
. . . . . . . 8
⊢ (𝑘 = 𝑁 → (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑘)) × {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) ∣ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) = (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) / 𝑝⦌𝐵})) |
| 180 | 179 | breq2d 5136 |
. . . . . . 7
⊢ (𝑘 = 𝑁 → (2 ∥ (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑘)) × {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) ∣ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ↔ 2 ∥ (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}))) |
| 181 | 180 | notbid 318 |
. . . . . 6
⊢ (𝑘 = 𝑁 → (¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑘))
× {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) ∣ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ↔ ¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}))) |
| 182 | 181 | imbi2d 340 |
. . . . 5
⊢ (𝑘 = 𝑁 → ((𝜑 → ¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑘))
× {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) ∣ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵})) ↔ (𝜑 → ¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) / 𝑝⦌𝐵})))) |
| 183 | | n2dvds1 16392 |
. . . . . . 7
⊢ ¬ 2
∥ 1 |
| 184 | | opex 5444 |
. . . . . . . . . 10
⊢
〈∅, ∅〉 ∈ V |
| 185 | | hashsng 14392 |
. . . . . . . . . 10
⊢
(〈∅, ∅〉 ∈ V →
(♯‘{〈∅, ∅〉}) = 1) |
| 186 | 184, 185 | ax-mp 5 |
. . . . . . . . 9
⊢
(♯‘{〈∅, ∅〉}) = 1 |
| 187 | | nnuz 12900 |
. . . . . . . . . . . . . . . . 17
⊢ ℕ =
(ℤ≥‘1) |
| 188 | 1, 187 | eleqtrdi 2845 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘1)) |
| 189 | | eluzfz1 13553 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈
(ℤ≥‘1) → 1 ∈ (1...𝑁)) |
| 190 | 188, 189 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 1 ∈ (1...𝑁)) |
| 191 | | poimirlem28.5 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐾 ∈ ℕ) |
| 192 | 191 | nnnn0d 12567 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
| 193 | | 0elfz 13646 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ ℕ0
→ 0 ∈ (0...𝐾)) |
| 194 | | fconst6g 6772 |
. . . . . . . . . . . . . . . 16
⊢ (0 ∈
(0...𝐾) → ((1...𝑁) × {0}):(1...𝑁)⟶(0...𝐾)) |
| 195 | 192, 193,
194 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((1...𝑁) × {0}):(1...𝑁)⟶(0...𝐾)) |
| 196 | 70 | fvconst2 7201 |
. . . . . . . . . . . . . . . 16
⊢ (1 ∈
(1...𝑁) → (((1...𝑁) × {0})‘1) =
0) |
| 197 | 190, 196 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (((1...𝑁) × {0})‘1) =
0) |
| 198 | 190, 195,
197 | 3jca 1128 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (1 ∈ (1...𝑁) ∧ ((1...𝑁) × {0}):(1...𝑁)⟶(0...𝐾) ∧ (((1...𝑁) × {0})‘1) =
0)) |
| 199 | | nfv 1914 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑝(𝜑 ∧ (1 ∈ (1...𝑁) ∧ ((1...𝑁) × {0}):(1...𝑁)⟶(0...𝐾) ∧ (((1...𝑁) × {0})‘1) =
0)) |
| 200 | | nfcsb1v 3903 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑝⦋((1...𝑁) × {0}) / 𝑝⦌𝐵 |
| 201 | 200 | nfeq1 2915 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑝⦋((1...𝑁) × {0}) / 𝑝⦌𝐵 = 0 |
| 202 | 199, 201 | nfim 1896 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑝((𝜑 ∧ (1 ∈ (1...𝑁) ∧ ((1...𝑁) × {0}):(1...𝑁)⟶(0...𝐾) ∧ (((1...𝑁) × {0})‘1) = 0)) →
⦋((1...𝑁)
× {0}) / 𝑝⦌𝐵 = 0) |
| 203 | | ovex 7443 |
. . . . . . . . . . . . . . . 16
⊢
(1...𝑁) ∈
V |
| 204 | | snex 5411 |
. . . . . . . . . . . . . . . 16
⊢ {0}
∈ V |
| 205 | 203, 204 | xpex 7752 |
. . . . . . . . . . . . . . 15
⊢
((1...𝑁) ×
{0}) ∈ V |
| 206 | | feq1 6691 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 = ((1...𝑁) × {0}) → (𝑝:(1...𝑁)⟶(0...𝐾) ↔ ((1...𝑁) × {0}):(1...𝑁)⟶(0...𝐾))) |
| 207 | | fveq1 6880 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑝 = ((1...𝑁) × {0}) → (𝑝‘1) = (((1...𝑁) × {0})‘1)) |
| 208 | 207 | eqeq1d 2738 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 = ((1...𝑁) × {0}) → ((𝑝‘1) = 0 ↔ (((1...𝑁) × {0})‘1) =
0)) |
| 209 | 206, 208 | 3anbi23d 1441 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 = ((1...𝑁) × {0}) → ((1 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘1) = 0) ↔ (1 ∈ (1...𝑁) ∧ ((1...𝑁) × {0}):(1...𝑁)⟶(0...𝐾) ∧ (((1...𝑁) × {0})‘1) =
0))) |
| 210 | 209 | anbi2d 630 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 = ((1...𝑁) × {0}) → ((𝜑 ∧ (1 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘1) = 0)) ↔ (𝜑 ∧ (1 ∈ (1...𝑁) ∧ ((1...𝑁) × {0}):(1...𝑁)⟶(0...𝐾) ∧ (((1...𝑁) × {0})‘1) =
0)))) |
| 211 | | csbeq1a 3893 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 = ((1...𝑁) × {0}) → 𝐵 = ⦋((1...𝑁) × {0}) / 𝑝⦌𝐵) |
| 212 | 211 | eqeq1d 2738 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 = ((1...𝑁) × {0}) → (𝐵 = 0 ↔ ⦋((1...𝑁) × {0}) / 𝑝⦌𝐵 = 0)) |
| 213 | 210, 212 | imbi12d 344 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 = ((1...𝑁) × {0}) → (((𝜑 ∧ (1 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘1) = 0)) → 𝐵 = 0) ↔ ((𝜑 ∧ (1 ∈ (1...𝑁) ∧ ((1...𝑁) × {0}):(1...𝑁)⟶(0...𝐾) ∧ (((1...𝑁) × {0})‘1) = 0)) →
⦋((1...𝑁)
× {0}) / 𝑝⦌𝐵 = 0))) |
| 214 | | 1ex 11236 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
V |
| 215 | | eleq1 2823 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 1 → (𝑛 ∈ (1...𝑁) ↔ 1 ∈ (1...𝑁))) |
| 216 | | fveqeq2 6890 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 1 → ((𝑝‘𝑛) = 0 ↔ (𝑝‘1) = 0)) |
| 217 | 215, 216 | 3anbi13d 1440 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 1 → ((𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘𝑛) = 0) ↔ (1 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘1) = 0))) |
| 218 | 217 | anbi2d 630 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 1 → ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘𝑛) = 0)) ↔ (𝜑 ∧ (1 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘1) = 0)))) |
| 219 | | breq2 5128 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 1 → (𝐵 < 𝑛 ↔ 𝐵 < 1)) |
| 220 | 218, 219 | imbi12d 344 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 1 → (((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘𝑛) = 0)) → 𝐵 < 𝑛) ↔ ((𝜑 ∧ (1 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘1) = 0)) → 𝐵 < 1))) |
| 221 | | poimirlem28.3 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘𝑛) = 0)) → 𝐵 < 𝑛) |
| 222 | 214, 220,
221 | vtocl 3542 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (1 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘1) = 0)) → 𝐵 < 1) |
| 223 | | poimirlem28.2 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑝:(1...𝑁)⟶(0...𝐾)) → 𝐵 ∈ (0...𝑁)) |
| 224 | | elfznn0 13642 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵 ∈ (0...𝑁) → 𝐵 ∈
ℕ0) |
| 225 | | nn0lt10b 12660 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵 ∈ ℕ0
→ (𝐵 < 1 ↔
𝐵 = 0)) |
| 226 | 223, 224,
225 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑝:(1...𝑁)⟶(0...𝐾)) → (𝐵 < 1 ↔ 𝐵 = 0)) |
| 227 | 226 | 3ad2antr2 1190 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (1 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘1) = 0)) → (𝐵 < 1 ↔ 𝐵 = 0)) |
| 228 | 222, 227 | mpbid 232 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (1 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘1) = 0)) → 𝐵 = 0) |
| 229 | 202, 205,
213, 228 | vtoclf 3548 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (1 ∈ (1...𝑁) ∧ ((1...𝑁) × {0}):(1...𝑁)⟶(0...𝐾) ∧ (((1...𝑁) × {0})‘1) = 0)) →
⦋((1...𝑁)
× {0}) / 𝑝⦌𝐵 = 0) |
| 230 | 198, 229 | mpdan 687 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ⦋((1...𝑁) × {0}) / 𝑝⦌𝐵 = 0) |
| 231 | 230 | eqcomd 2742 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 =
⦋((1...𝑁)
× {0}) / 𝑝⦌𝐵) |
| 232 | 231 | ralrimivw 3137 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑠 ∈ {〈∅, ∅〉}0 =
⦋((1...𝑁)
× {0}) / 𝑝⦌𝐵) |
| 233 | | rabid2 3454 |
. . . . . . . . . . 11
⊢
({〈∅, ∅〉} = {𝑠 ∈ {〈∅, ∅〉}
∣ 0 = ⦋((1...𝑁) × {0}) / 𝑝⦌𝐵} ↔ ∀𝑠 ∈ {〈∅, ∅〉}0 =
⦋((1...𝑁)
× {0}) / 𝑝⦌𝐵) |
| 234 | 232, 233 | sylibr 234 |
. . . . . . . . . 10
⊢ (𝜑 → {〈∅,
∅〉} = {𝑠 ∈
{〈∅, ∅〉} ∣ 0 = ⦋((1...𝑁) × {0}) / 𝑝⦌𝐵}) |
| 235 | 234 | fveq2d 6885 |
. . . . . . . . 9
⊢ (𝜑 →
(♯‘{〈∅, ∅〉}) = (♯‘{𝑠 ∈ {〈∅,
∅〉} ∣ 0 = ⦋((1...𝑁) × {0}) / 𝑝⦌𝐵})) |
| 236 | 186, 235 | eqtr3id 2785 |
. . . . . . . 8
⊢ (𝜑 → 1 = (♯‘{𝑠 ∈ {〈∅,
∅〉} ∣ 0 = ⦋((1...𝑁) × {0}) / 𝑝⦌𝐵})) |
| 237 | 236 | breq2d 5136 |
. . . . . . 7
⊢ (𝜑 → (2 ∥ 1 ↔ 2
∥ (♯‘{𝑠
∈ {〈∅, ∅〉} ∣ 0 = ⦋((1...𝑁) × {0}) / 𝑝⦌𝐵}))) |
| 238 | 183, 237 | mtbii 326 |
. . . . . 6
⊢ (𝜑 → ¬ 2 ∥
(♯‘{𝑠 ∈
{〈∅, ∅〉} ∣ 0 = ⦋((1...𝑁) × {0}) / 𝑝⦌𝐵})) |
| 239 | 238 | a1i 11 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (𝜑 → ¬ 2
∥ (♯‘{𝑠
∈ {〈∅, ∅〉} ∣ 0 = ⦋((1...𝑁) × {0}) / 𝑝⦌𝐵}))) |
| 240 | | 2z 12629 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℤ |
| 241 | | fzfi 13995 |
. . . . . . . . . . . . . . . . 17
⊢
(1...(𝑚 + 1)) ∈
Fin |
| 242 | | mapfi 9365 |
. . . . . . . . . . . . . . . . 17
⊢
(((0..^𝐾) ∈ Fin
∧ (1...(𝑚 + 1)) ∈
Fin) → ((0..^𝐾)
↑m (1...(𝑚
+ 1))) ∈ Fin) |
| 243 | 10, 241, 242 | mp2an 692 |
. . . . . . . . . . . . . . . 16
⊢
((0..^𝐾)
↑m (1...(𝑚
+ 1))) ∈ Fin |
| 244 | | ovex 7443 |
. . . . . . . . . . . . . . . . . . 19
⊢
(1...(𝑚 + 1)) ∈
V |
| 245 | 244, 244 | mapval 8857 |
. . . . . . . . . . . . . . . . . 18
⊢
((1...(𝑚 + 1))
↑m (1...(𝑚
+ 1))) = {𝑓 ∣ 𝑓:(1...(𝑚 + 1))⟶(1...(𝑚 + 1))} |
| 246 | | mapfi 9365 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((1...(𝑚 + 1))
∈ Fin ∧ (1...(𝑚 +
1)) ∈ Fin) → ((1...(𝑚 + 1)) ↑m (1...(𝑚 + 1))) ∈
Fin) |
| 247 | 241, 241,
246 | mp2an 692 |
. . . . . . . . . . . . . . . . . 18
⊢
((1...(𝑚 + 1))
↑m (1...(𝑚
+ 1))) ∈ Fin |
| 248 | 245, 247 | eqeltrri 2832 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑓 ∣ 𝑓:(1...(𝑚 + 1))⟶(1...(𝑚 + 1))} ∈ Fin |
| 249 | | f1of 6823 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1)) → 𝑓:(1...(𝑚 + 1))⟶(1...(𝑚 + 1))) |
| 250 | 249 | ss2abi 4047 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))} ⊆ {𝑓 ∣ 𝑓:(1...(𝑚 + 1))⟶(1...(𝑚 + 1))} |
| 251 | | ssfi 9192 |
. . . . . . . . . . . . . . . . 17
⊢ (({𝑓 ∣ 𝑓:(1...(𝑚 + 1))⟶(1...(𝑚 + 1))} ∈ Fin ∧ {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))} ⊆ {𝑓 ∣ 𝑓:(1...(𝑚 + 1))⟶(1...(𝑚 + 1))}) → {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))} ∈ Fin) |
| 252 | 248, 250,
251 | mp2an 692 |
. . . . . . . . . . . . . . . 16
⊢ {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))} ∈ Fin |
| 253 | | xpfi 9335 |
. . . . . . . . . . . . . . . 16
⊢
((((0..^𝐾)
↑m (1...(𝑚
+ 1))) ∈ Fin ∧ {𝑓
∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))} ∈ Fin) → (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∈ Fin) |
| 254 | 243, 252,
253 | mp2an 692 |
. . . . . . . . . . . . . . 15
⊢
(((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∈ Fin |
| 255 | | rabfi 9280 |
. . . . . . . . . . . . . . 15
⊢
((((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∈ Fin → {𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵} ∈ Fin) |
| 256 | | hashcl 14379 |
. . . . . . . . . . . . . . 15
⊢ ({𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵} ∈ Fin → (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ∈
ℕ0) |
| 257 | 254, 255,
256 | mp2b 10 |
. . . . . . . . . . . . . 14
⊢
(♯‘{𝑠
∈ (((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ∈
ℕ0 |
| 258 | 257 | nn0zi 12622 |
. . . . . . . . . . . . 13
⊢
(♯‘{𝑠
∈ (((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ∈ ℤ |
| 259 | | rabfi 9280 |
. . . . . . . . . . . . . . 15
⊢
((((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∈ Fin → {𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))} ∈ Fin) |
| 260 | | hashcl 14379 |
. . . . . . . . . . . . . . 15
⊢ ({𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))} ∈ Fin →
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}) ∈
ℕ0) |
| 261 | 254, 259,
260 | mp2b 10 |
. . . . . . . . . . . . . 14
⊢
(♯‘{𝑠
∈ (((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}) ∈
ℕ0 |
| 262 | 261 | nn0zi 12622 |
. . . . . . . . . . . . 13
⊢
(♯‘{𝑠
∈ (((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}) ∈ ℤ |
| 263 | 240, 258,
262 | 3pm3.2i 1340 |
. . . . . . . . . . . 12
⊢ (2 ∈
ℤ ∧ (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ∈ ℤ ∧
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}) ∈ ℤ) |
| 264 | | nn0p1nn 12545 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ ℕ0
→ (𝑚 + 1) ∈
ℕ) |
| 265 | 264 | ad2antrl 728 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → (𝑚 + 1) ∈ ℕ) |
| 266 | | uneq1 4141 |
. . . . . . . . . . . . . . . 16
⊢ (𝑞 = ((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) → (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) = (((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))) |
| 267 | 266 | csbeq1d 3883 |
. . . . . . . . . . . . . . 15
⊢ (𝑞 = ((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) →
⦋(𝑞 ∪
((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵) |
| 268 | 70 | fconst 6769 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑚 + 1) + 1)...𝑁) × {0}):(((𝑚 + 1) + 1)...𝑁)⟶{0} |
| 269 | 268 | jctr 524 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑞:(1...(𝑚 + 1))⟶(0...𝐾) → (𝑞:(1...(𝑚 + 1))⟶(0...𝐾) ∧ ((((𝑚 + 1) + 1)...𝑁) × {0}):(((𝑚 + 1) + 1)...𝑁)⟶{0})) |
| 270 | 264 | nnred 12260 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑚 ∈ ℕ0
→ (𝑚 + 1) ∈
ℝ) |
| 271 | 270 | ltp1d 12177 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑚 ∈ ℕ0
→ (𝑚 + 1) < ((𝑚 + 1) + 1)) |
| 272 | | fzdisj 13573 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑚 + 1) < ((𝑚 + 1) + 1) → ((1...(𝑚 + 1)) ∩ (((𝑚 + 1) + 1)...𝑁)) = ∅) |
| 273 | 271, 272 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑚 ∈ ℕ0
→ ((1...(𝑚 + 1)) ∩
(((𝑚 + 1) + 1)...𝑁)) = ∅) |
| 274 | | fun 6745 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑞:(1...(𝑚 + 1))⟶(0...𝐾) ∧ ((((𝑚 + 1) + 1)...𝑁) × {0}):(((𝑚 + 1) + 1)...𝑁)⟶{0}) ∧ ((1...(𝑚 + 1)) ∩ (((𝑚 + 1) + 1)...𝑁)) = ∅) → (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):((1...(𝑚 + 1)) ∪ (((𝑚 + 1) + 1)...𝑁))⟶((0...𝐾) ∪ {0})) |
| 275 | 269, 273,
274 | syl2anr 597 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑚 ∈ ℕ0
∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) → (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):((1...(𝑚 + 1)) ∪ (((𝑚 + 1) + 1)...𝑁))⟶((0...𝐾) ∪ {0})) |
| 276 | 275 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑚 ∈ ℕ0
∧ 𝑚 < 𝑁) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) → (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):((1...(𝑚 + 1)) ∪ (((𝑚 + 1) + 1)...𝑁))⟶((0...𝐾) ∪ {0})) |
| 277 | 276 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾))) → (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):((1...(𝑚 + 1)) ∪ (((𝑚 + 1) + 1)...𝑁))⟶((0...𝐾) ∪ {0})) |
| 278 | 264 | peano2nnd 12262 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑚 ∈ ℕ0
→ ((𝑚 + 1) + 1) ∈
ℕ) |
| 279 | 278, 187 | eleqtrdi 2845 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑚 ∈ ℕ0
→ ((𝑚 + 1) + 1) ∈
(ℤ≥‘1)) |
| 280 | 279 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → ((𝑚 + 1) + 1) ∈
(ℤ≥‘1)) |
| 281 | | nn0z 12618 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑚 ∈ ℕ0
→ 𝑚 ∈
ℤ) |
| 282 | 1 | nnzd 12620 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 283 | | zltp1le 12647 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑚 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑚 < 𝑁 ↔ (𝑚 + 1) ≤ 𝑁)) |
| 284 | 281, 282,
283 | syl2anr 597 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (𝑚 < 𝑁 ↔ (𝑚 + 1) ≤ 𝑁)) |
| 285 | 284 | biimpa 476 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 < 𝑁) → (𝑚 + 1) ≤ 𝑁) |
| 286 | 285 | anasss 466 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → (𝑚 + 1) ≤ 𝑁) |
| 287 | 281 | peano2zd 12705 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑚 ∈ ℕ0
→ (𝑚 + 1) ∈
ℤ) |
| 288 | 287 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑚 ∈ ℕ0
∧ 𝑚 < 𝑁) → (𝑚 + 1) ∈ ℤ) |
| 289 | | eluz 12871 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑚 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈
(ℤ≥‘(𝑚 + 1)) ↔ (𝑚 + 1) ≤ 𝑁)) |
| 290 | 288, 282,
289 | syl2anr 597 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → (𝑁 ∈ (ℤ≥‘(𝑚 + 1)) ↔ (𝑚 + 1) ≤ 𝑁)) |
| 291 | 286, 290 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → 𝑁 ∈ (ℤ≥‘(𝑚 + 1))) |
| 292 | | fzsplit2 13571 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑚 + 1) + 1) ∈
(ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘(𝑚 + 1))) → (1...𝑁) = ((1...(𝑚 + 1)) ∪ (((𝑚 + 1) + 1)...𝑁))) |
| 293 | 280, 291,
292 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → (1...𝑁) = ((1...(𝑚 + 1)) ∪ (((𝑚 + 1) + 1)...𝑁))) |
| 294 | 293 | eqcomd 2742 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → ((1...(𝑚 + 1)) ∪ (((𝑚 + 1) + 1)...𝑁)) = (1...𝑁)) |
| 295 | 192, 193 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 0 ∈ (0...𝐾)) |
| 296 | 295 | snssd 4790 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → {0} ⊆ (0...𝐾)) |
| 297 | | ssequn2 4169 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ({0}
⊆ (0...𝐾) ↔
((0...𝐾) ∪ {0}) =
(0...𝐾)) |
| 298 | 296, 297 | sylib 218 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((0...𝐾) ∪ {0}) = (0...𝐾)) |
| 299 | 298 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → ((0...𝐾) ∪ {0}) = (0...𝐾)) |
| 300 | 294, 299 | feq23d 6706 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):((1...(𝑚 + 1)) ∪ (((𝑚 + 1) + 1)...𝑁))⟶((0...𝐾) ∪ {0}) ↔ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾))) |
| 301 | 300 | adantrr 717 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾))) → ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):((1...(𝑚 + 1)) ∪ (((𝑚 + 1) + 1)...𝑁))⟶((0...𝐾) ∪ {0}) ↔ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾))) |
| 302 | 277, 301 | mpbid 232 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾))) → (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾)) |
| 303 | | nfv 1914 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑝(𝜑 ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾)) |
| 304 | | nfcsb1v 3903 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑝⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 |
| 305 | 304 | nfel1 2916 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑝⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∈ (0...𝑁) |
| 306 | 303, 305 | nfim 1896 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑝((𝜑 ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾)) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∈ (0...𝑁)) |
| 307 | | vex 3468 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑞 ∈ V |
| 308 | | ovex 7443 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑚 + 1) + 1)...𝑁) ∈ V |
| 309 | 308, 204 | xpex 7752 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑚 + 1) + 1)...𝑁) × {0}) ∈ V |
| 310 | 307, 309 | unex 7743 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) ∈ V |
| 311 | | feq1 6691 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑝 = (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) → (𝑝:(1...𝑁)⟶(0...𝐾) ↔ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾))) |
| 312 | 311 | anbi2d 630 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑝 = (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) → ((𝜑 ∧ 𝑝:(1...𝑁)⟶(0...𝐾)) ↔ (𝜑 ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾)))) |
| 313 | | csbeq1a 3893 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑝 = (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) → 𝐵 = ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵) |
| 314 | 313 | eleq1d 2820 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑝 = (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) → (𝐵 ∈ (0...𝑁) ↔ ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∈ (0...𝑁))) |
| 315 | 312, 314 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑝 = (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) → (((𝜑 ∧ 𝑝:(1...𝑁)⟶(0...𝐾)) → 𝐵 ∈ (0...𝑁)) ↔ ((𝜑 ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾)) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∈ (0...𝑁)))) |
| 316 | 306, 310,
315, 223 | vtoclf 3548 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾)) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∈ (0...𝑁)) |
| 317 | 302, 316 | syldan 591 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾))) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∈ (0...𝑁)) |
| 318 | 317 | anassrs 467 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∈ (0...𝑁)) |
| 319 | | elfznn0 13642 |
. . . . . . . . . . . . . . . . 17
⊢
(⦋(𝑞
∪ ((((𝑚 + 1) +
1)...𝑁) × {0})) /
𝑝⦌𝐵 ∈ (0...𝑁) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∈
ℕ0) |
| 320 | 318, 319 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∈
ℕ0) |
| 321 | 264 | nnnn0d 12567 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈ ℕ0
→ (𝑚 + 1) ∈
ℕ0) |
| 322 | 321 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑚 ∈ ℕ0
∧ 𝑚 < 𝑁) → (𝑚 + 1) ∈
ℕ0) |
| 323 | 322 | ad2antlr 727 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) → (𝑚 + 1) ∈
ℕ0) |
| 324 | | leloe 11326 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑚 + 1) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑚 + 1) ≤ 𝑁 ↔ ((𝑚 + 1) < 𝑁 ∨ (𝑚 + 1) = 𝑁))) |
| 325 | 270, 3, 324 | syl2anr 597 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → ((𝑚 + 1) ≤ 𝑁 ↔ ((𝑚 + 1) < 𝑁 ∨ (𝑚 + 1) = 𝑁))) |
| 326 | 284, 325 | bitrd 279 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (𝑚 < 𝑁 ↔ ((𝑚 + 1) < 𝑁 ∨ (𝑚 + 1) = 𝑁))) |
| 327 | 326 | biimpd 229 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (𝑚 < 𝑁 → ((𝑚 + 1) < 𝑁 ∨ (𝑚 + 1) = 𝑁))) |
| 328 | 327 | imdistani 568 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 < 𝑁) → ((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 + 1) < 𝑁 ∨ (𝑚 + 1) = 𝑁))) |
| 329 | 328 | anasss 466 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → ((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 + 1) < 𝑁 ∨ (𝑚 + 1) = 𝑁))) |
| 330 | | simplll 774 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ (𝑚 + 1) < 𝑁) → 𝜑) |
| 331 | 278 | nnge1d 12293 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑚 ∈ ℕ0
→ 1 ≤ ((𝑚 + 1) +
1)) |
| 332 | 331 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑚 + 1) < 𝑁) → 1 ≤ ((𝑚 + 1) + 1)) |
| 333 | | zltp1le 12647 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑚 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑚 + 1) < 𝑁 ↔ ((𝑚 + 1) + 1) ≤ 𝑁)) |
| 334 | 287, 282,
333 | syl2anr 597 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → ((𝑚 + 1) < 𝑁 ↔ ((𝑚 + 1) + 1) ≤ 𝑁)) |
| 335 | 334 | biimpa 476 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑚 + 1) < 𝑁) → ((𝑚 + 1) + 1) ≤ 𝑁) |
| 336 | 287 | peano2zd 12705 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑚 ∈ ℕ0
→ ((𝑚 + 1) + 1) ∈
ℤ) |
| 337 | | 1z 12627 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 1 ∈
ℤ |
| 338 | | elfz 13535 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝑚 + 1) + 1) ∈ ℤ ∧
1 ∈ ℤ ∧ 𝑁
∈ ℤ) → (((𝑚
+ 1) + 1) ∈ (1...𝑁)
↔ (1 ≤ ((𝑚 + 1) +
1) ∧ ((𝑚 + 1) + 1) ≤
𝑁))) |
| 339 | 337, 338 | mp3an2 1451 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝑚 + 1) + 1) ∈ ℤ ∧
𝑁 ∈ ℤ) →
(((𝑚 + 1) + 1) ∈
(1...𝑁) ↔ (1 ≤
((𝑚 + 1) + 1) ∧ ((𝑚 + 1) + 1) ≤ 𝑁))) |
| 340 | 336, 282,
339 | syl2anr 597 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (((𝑚 + 1) + 1) ∈ (1...𝑁) ↔ (1 ≤ ((𝑚 + 1) + 1) ∧ ((𝑚 + 1) + 1) ≤ 𝑁))) |
| 341 | 340 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑚 + 1) < 𝑁) → (((𝑚 + 1) + 1) ∈ (1...𝑁) ↔ (1 ≤ ((𝑚 + 1) + 1) ∧ ((𝑚 + 1) + 1) ≤ 𝑁))) |
| 342 | 332, 335,
341 | mpbir2and 713 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑚 + 1) < 𝑁) → ((𝑚 + 1) + 1) ∈ (1...𝑁)) |
| 343 | 342 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ (𝑚 + 1) < 𝑁) → ((𝑚 + 1) + 1) ∈ (1...𝑁)) |
| 344 | | nn0re 12515 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑚 ∈ ℕ0
→ 𝑚 ∈
ℝ) |
| 345 | 344 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑚 + 1) < 𝑁) → 𝑚 ∈ ℝ) |
| 346 | 270 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑚 + 1) < 𝑁) → (𝑚 + 1) ∈ ℝ) |
| 347 | 3 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑚 + 1) < 𝑁) → 𝑁 ∈ ℝ) |
| 348 | 344 | ltp1d 12177 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑚 ∈ ℕ0
→ 𝑚 < (𝑚 + 1)) |
| 349 | 348 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑚 + 1) < 𝑁) → 𝑚 < (𝑚 + 1)) |
| 350 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑚 + 1) < 𝑁) → (𝑚 + 1) < 𝑁) |
| 351 | 345, 346,
347, 349, 350 | lttrd 11401 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑚 + 1) < 𝑁) → 𝑚 < 𝑁) |
| 352 | 351 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ (𝑚 + 1) < 𝑁) → 𝑚 < 𝑁) |
| 353 | | anass 468 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 < 𝑁) ↔ (𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁))) |
| 354 | 302 | anassrs 467 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) → (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾)) |
| 355 | 353, 354 | sylanb 581 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 < 𝑁) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) → (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾)) |
| 356 | 355 | an32s 652 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ 𝑚 < 𝑁) → (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾)) |
| 357 | 352, 356 | syldan 591 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ (𝑚 + 1) < 𝑁) → (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾)) |
| 358 | | ffn 6711 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑞:(1...(𝑚 + 1))⟶(0...𝐾) → 𝑞 Fn (1...(𝑚 + 1))) |
| 359 | 358 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ (𝑚 + 1) < 𝑁) → 𝑞 Fn (1...(𝑚 + 1))) |
| 360 | 273 | ad3antlr 731 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ (𝑚 + 1) < 𝑁) → ((1...(𝑚 + 1)) ∩ (((𝑚 + 1) + 1)...𝑁)) = ∅) |
| 361 | | eluz 12871 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑚 + 1) + 1) ∈ ℤ ∧
𝑁 ∈ ℤ) →
(𝑁 ∈
(ℤ≥‘((𝑚 + 1) + 1)) ↔ ((𝑚 + 1) + 1) ≤ 𝑁)) |
| 362 | 336, 282,
361 | syl2anr 597 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (𝑁 ∈
(ℤ≥‘((𝑚 + 1) + 1)) ↔ ((𝑚 + 1) + 1) ≤ 𝑁)) |
| 363 | 362 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑚 + 1) < 𝑁) → (𝑁 ∈
(ℤ≥‘((𝑚 + 1) + 1)) ↔ ((𝑚 + 1) + 1) ≤ 𝑁)) |
| 364 | 335, 363 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑚 + 1) < 𝑁) → 𝑁 ∈
(ℤ≥‘((𝑚 + 1) + 1))) |
| 365 | | eluzfz1 13553 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑁 ∈
(ℤ≥‘((𝑚 + 1) + 1)) → ((𝑚 + 1) + 1) ∈ (((𝑚 + 1) + 1)...𝑁)) |
| 366 | 364, 365 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑚 + 1) < 𝑁) → ((𝑚 + 1) + 1) ∈ (((𝑚 + 1) + 1)...𝑁)) |
| 367 | 366 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ (𝑚 + 1) < 𝑁) → ((𝑚 + 1) + 1) ∈ (((𝑚 + 1) + 1)...𝑁)) |
| 368 | | fnconstg 6771 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (0 ∈
V → ((((𝑚 + 1) +
1)...𝑁) × {0}) Fn
(((𝑚 + 1) + 1)...𝑁)) |
| 369 | 70, 368 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑚 + 1) + 1)...𝑁) × {0}) Fn (((𝑚 + 1) + 1)...𝑁) |
| 370 | | fvun2 6976 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑞 Fn (1...(𝑚 + 1)) ∧ ((((𝑚 + 1) + 1)...𝑁) × {0}) Fn (((𝑚 + 1) + 1)...𝑁) ∧ (((1...(𝑚 + 1)) ∩ (((𝑚 + 1) + 1)...𝑁)) = ∅ ∧ ((𝑚 + 1) + 1) ∈ (((𝑚 + 1) + 1)...𝑁))) → ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘((𝑚 + 1) + 1)) = (((((𝑚 + 1) + 1)...𝑁) × {0})‘((𝑚 + 1) + 1))) |
| 371 | 369, 370 | mp3an2 1451 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑞 Fn (1...(𝑚 + 1)) ∧ (((1...(𝑚 + 1)) ∩ (((𝑚 + 1) + 1)...𝑁)) = ∅ ∧ ((𝑚 + 1) + 1) ∈ (((𝑚 + 1) + 1)...𝑁))) → ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘((𝑚 + 1) + 1)) = (((((𝑚 + 1) + 1)...𝑁) × {0})‘((𝑚 + 1) + 1))) |
| 372 | 359, 360,
367, 371 | syl12anc 836 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ (𝑚 + 1) < 𝑁) → ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘((𝑚 + 1) + 1)) = (((((𝑚 + 1) + 1)...𝑁) × {0})‘((𝑚 + 1) + 1))) |
| 373 | 70 | fvconst2 7201 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑚 + 1) + 1) ∈ (((𝑚 + 1) + 1)...𝑁) → (((((𝑚 + 1) + 1)...𝑁) × {0})‘((𝑚 + 1) + 1)) = 0) |
| 374 | 367, 373 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ (𝑚 + 1) < 𝑁) → (((((𝑚 + 1) + 1)...𝑁) × {0})‘((𝑚 + 1) + 1)) = 0) |
| 375 | 372, 374 | eqtrd 2771 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ (𝑚 + 1) < 𝑁) → ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘((𝑚 + 1) + 1)) = 0) |
| 376 | | nfv 1914 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑝(𝜑 ∧ (((𝑚 + 1) + 1) ∈ (1...𝑁) ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾) ∧ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘((𝑚 + 1) + 1)) = 0)) |
| 377 | | nfcv 2899 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑝
< |
| 378 | | nfcv 2899 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑝((𝑚 + 1) + 1) |
| 379 | 304, 377,
378 | nfbr 5171 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑝⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 < ((𝑚 + 1) + 1) |
| 380 | 376, 379 | nfim 1896 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑝((𝜑 ∧ (((𝑚 + 1) + 1) ∈ (1...𝑁) ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾) ∧ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘((𝑚 + 1) + 1)) = 0)) →
⦋(𝑞 ∪
((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 < ((𝑚 + 1) + 1)) |
| 381 | | fveq1 6880 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑝 = (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) → (𝑝‘((𝑚 + 1) + 1)) = ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘((𝑚 + 1) + 1))) |
| 382 | 381 | eqeq1d 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑝 = (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) → ((𝑝‘((𝑚 + 1) + 1)) = 0 ↔ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘((𝑚 + 1) + 1)) = 0)) |
| 383 | 311, 382 | 3anbi23d 1441 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑝 = (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) → ((((𝑚 + 1) + 1) ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘((𝑚 + 1) + 1)) = 0) ↔ (((𝑚 + 1) + 1) ∈ (1...𝑁) ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾) ∧ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘((𝑚 + 1) + 1)) = 0))) |
| 384 | 383 | anbi2d 630 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑝 = (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) → ((𝜑 ∧ (((𝑚 + 1) + 1) ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘((𝑚 + 1) + 1)) = 0)) ↔ (𝜑 ∧ (((𝑚 + 1) + 1) ∈ (1...𝑁) ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾) ∧ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘((𝑚 + 1) + 1)) = 0)))) |
| 385 | 313 | breq1d 5134 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑝 = (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) → (𝐵 < ((𝑚 + 1) + 1) ↔ ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 < ((𝑚 + 1) + 1))) |
| 386 | 384, 385 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑝 = (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) → (((𝜑 ∧ (((𝑚 + 1) + 1) ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘((𝑚 + 1) + 1)) = 0)) → 𝐵 < ((𝑚 + 1) + 1)) ↔ ((𝜑 ∧ (((𝑚 + 1) + 1) ∈ (1...𝑁) ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾) ∧ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘((𝑚 + 1) + 1)) = 0)) →
⦋(𝑞 ∪
((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 < ((𝑚 + 1) + 1)))) |
| 387 | | ovex 7443 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑚 + 1) + 1) ∈
V |
| 388 | | eleq1 2823 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑛 = ((𝑚 + 1) + 1) → (𝑛 ∈ (1...𝑁) ↔ ((𝑚 + 1) + 1) ∈ (1...𝑁))) |
| 389 | | fveqeq2 6890 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑛 = ((𝑚 + 1) + 1) → ((𝑝‘𝑛) = 0 ↔ (𝑝‘((𝑚 + 1) + 1)) = 0)) |
| 390 | 388, 389 | 3anbi13d 1440 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 = ((𝑚 + 1) + 1) → ((𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘𝑛) = 0) ↔ (((𝑚 + 1) + 1) ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘((𝑚 + 1) + 1)) = 0))) |
| 391 | 390 | anbi2d 630 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 = ((𝑚 + 1) + 1) → ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘𝑛) = 0)) ↔ (𝜑 ∧ (((𝑚 + 1) + 1) ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘((𝑚 + 1) + 1)) = 0)))) |
| 392 | | breq2 5128 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 = ((𝑚 + 1) + 1) → (𝐵 < 𝑛 ↔ 𝐵 < ((𝑚 + 1) + 1))) |
| 393 | 391, 392 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = ((𝑚 + 1) + 1) → (((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘𝑛) = 0)) → 𝐵 < 𝑛) ↔ ((𝜑 ∧ (((𝑚 + 1) + 1) ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘((𝑚 + 1) + 1)) = 0)) → 𝐵 < ((𝑚 + 1) + 1)))) |
| 394 | 387, 393,
221 | vtocl 3542 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (((𝑚 + 1) + 1) ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘((𝑚 + 1) + 1)) = 0)) → 𝐵 < ((𝑚 + 1) + 1)) |
| 395 | 380, 310,
386, 394 | vtoclf 3548 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (((𝑚 + 1) + 1) ∈ (1...𝑁) ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾) ∧ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘((𝑚 + 1) + 1)) = 0)) →
⦋(𝑞 ∪
((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 < ((𝑚 + 1) + 1)) |
| 396 | 330, 343,
357, 375, 395 | syl13anc 1374 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ (𝑚 + 1) < 𝑁) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 < ((𝑚 + 1) + 1)) |
| 397 | 353, 318 | sylanb 581 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 < 𝑁) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∈ (0...𝑁)) |
| 398 | 397 | an32s 652 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ 𝑚 < 𝑁) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∈ (0...𝑁)) |
| 399 | 398 | elfzelzd 13547 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ 𝑚 < 𝑁) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∈ ℤ) |
| 400 | 352, 399 | syldan 591 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ (𝑚 + 1) < 𝑁) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∈ ℤ) |
| 401 | 287 | ad3antlr 731 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ (𝑚 + 1) < 𝑁) → (𝑚 + 1) ∈ ℤ) |
| 402 | | zleltp1 12648 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((⦋(𝑞
∪ ((((𝑚 + 1) +
1)...𝑁) × {0})) /
𝑝⦌𝐵 ∈ ℤ ∧ (𝑚 + 1) ∈ ℤ) →
(⦋(𝑞 ∪
((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ≤ (𝑚 + 1) ↔ ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 < ((𝑚 + 1) + 1))) |
| 403 | 400, 401,
402 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ (𝑚 + 1) < 𝑁) → (⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ≤ (𝑚 + 1) ↔ ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 < ((𝑚 + 1) + 1))) |
| 404 | 396, 403 | mpbird 257 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ (𝑚 + 1) < 𝑁) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ≤ (𝑚 + 1)) |
| 405 | 348 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) → 𝑚 < (𝑚 + 1)) |
| 406 | | breq2 5128 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑚 + 1) = 𝑁 → (𝑚 < (𝑚 + 1) ↔ 𝑚 < 𝑁)) |
| 407 | 406 | biimpac 478 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑚 < (𝑚 + 1) ∧ (𝑚 + 1) = 𝑁) → 𝑚 < 𝑁) |
| 408 | 405, 407 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ (𝑚 + 1) = 𝑁) → 𝑚 < 𝑁) |
| 409 | | elfzle2 13550 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(⦋(𝑞
∪ ((((𝑚 + 1) +
1)...𝑁) × {0})) /
𝑝⦌𝐵 ∈ (0...𝑁) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ≤ 𝑁) |
| 410 | 398, 409 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ 𝑚 < 𝑁) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ≤ 𝑁) |
| 411 | 408, 410 | syldan 591 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ (𝑚 + 1) = 𝑁) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ≤ 𝑁) |
| 412 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ (𝑚 + 1) = 𝑁) → (𝑚 + 1) = 𝑁) |
| 413 | 411, 412 | breqtrrd 5152 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ (𝑚 + 1) = 𝑁) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ≤ (𝑚 + 1)) |
| 414 | 404, 413 | jaodan 959 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ ((𝑚 + 1) < 𝑁 ∨ (𝑚 + 1) = 𝑁)) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ≤ (𝑚 + 1)) |
| 415 | 414 | an32s 652 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 + 1) < 𝑁 ∨ (𝑚 + 1) = 𝑁)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ≤ (𝑚 + 1)) |
| 416 | 329, 415 | sylan 580 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ≤ (𝑚 + 1)) |
| 417 | | elfz2nn0 13640 |
. . . . . . . . . . . . . . . 16
⊢
(⦋(𝑞
∪ ((((𝑚 + 1) +
1)...𝑁) × {0})) /
𝑝⦌𝐵 ∈ (0...(𝑚 + 1)) ↔ (⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∈ ℕ0 ∧ (𝑚 + 1) ∈ ℕ0
∧ ⦋(𝑞
∪ ((((𝑚 + 1) +
1)...𝑁) × {0})) /
𝑝⦌𝐵 ≤ (𝑚 + 1))) |
| 418 | 320, 323,
416, 417 | syl3anbrc 1344 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∈ (0...(𝑚 + 1))) |
| 419 | | fzss2 13586 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈
(ℤ≥‘(𝑚 + 1)) → (1...(𝑚 + 1)) ⊆ (1...𝑁)) |
| 420 | 291, 419 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → (1...(𝑚 + 1)) ⊆ (1...𝑁)) |
| 421 | 420 | sselda 3963 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) ∧ 𝑛 ∈ (1...(𝑚 + 1))) → 𝑛 ∈ (1...𝑁)) |
| 422 | 421 | 3ad2antr1 1189 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) ∧ (𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾) ∧ (𝑞‘𝑛) = 0)) → 𝑛 ∈ (1...𝑁)) |
| 423 | 354 | 3ad2antr2 1190 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) ∧ (𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾) ∧ (𝑞‘𝑛) = 0)) → (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾)) |
| 424 | 358 | ad2antll 729 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾))) → 𝑞 Fn (1...(𝑚 + 1))) |
| 425 | 273 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾))) → ((1...(𝑚 + 1)) ∩ (((𝑚 + 1) + 1)...𝑁)) = ∅) |
| 426 | | simprl 770 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾))) → 𝑛 ∈ (1...(𝑚 + 1))) |
| 427 | | fvun1 6975 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑞 Fn (1...(𝑚 + 1)) ∧ ((((𝑚 + 1) + 1)...𝑁) × {0}) Fn (((𝑚 + 1) + 1)...𝑁) ∧ (((1...(𝑚 + 1)) ∩ (((𝑚 + 1) + 1)...𝑁)) = ∅ ∧ 𝑛 ∈ (1...(𝑚 + 1)))) → ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = (𝑞‘𝑛)) |
| 428 | 369, 427 | mp3an2 1451 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑞 Fn (1...(𝑚 + 1)) ∧ (((1...(𝑚 + 1)) ∩ (((𝑚 + 1) + 1)...𝑁)) = ∅ ∧ 𝑛 ∈ (1...(𝑚 + 1)))) → ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = (𝑞‘𝑛)) |
| 429 | 424, 425,
426, 428 | syl12anc 836 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾))) → ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = (𝑞‘𝑛)) |
| 430 | 429 | adantlrr 721 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) ∧ (𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾))) → ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = (𝑞‘𝑛)) |
| 431 | 430 | 3adantr3 1172 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) ∧ (𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾) ∧ (𝑞‘𝑛) = 0)) → ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = (𝑞‘𝑛)) |
| 432 | | simpr3 1197 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) ∧ (𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾) ∧ (𝑞‘𝑛) = 0)) → (𝑞‘𝑛) = 0) |
| 433 | 431, 432 | eqtrd 2771 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) ∧ (𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾) ∧ (𝑞‘𝑛) = 0)) → ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = 0) |
| 434 | 422, 423,
433 | 3jca 1128 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) ∧ (𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾) ∧ (𝑞‘𝑛) = 0)) → (𝑛 ∈ (1...𝑁) ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾) ∧ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = 0)) |
| 435 | | nfv 1914 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑝(𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾) ∧ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = 0)) |
| 436 | | nfcv 2899 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑝𝑛 |
| 437 | 304, 377,
436 | nfbr 5171 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑝⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 < 𝑛 |
| 438 | 435, 437 | nfim 1896 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑝((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾) ∧ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = 0)) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 < 𝑛) |
| 439 | | fveq1 6880 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑝 = (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) → (𝑝‘𝑛) = ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛)) |
| 440 | 439 | eqeq1d 2738 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑝 = (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) → ((𝑝‘𝑛) = 0 ↔ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = 0)) |
| 441 | 311, 440 | 3anbi23d 1441 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑝 = (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) → ((𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘𝑛) = 0) ↔ (𝑛 ∈ (1...𝑁) ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾) ∧ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = 0))) |
| 442 | 441 | anbi2d 630 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑝 = (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) → ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘𝑛) = 0)) ↔ (𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾) ∧ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = 0)))) |
| 443 | 313 | breq1d 5134 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑝 = (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) → (𝐵 < 𝑛 ↔ ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 < 𝑛)) |
| 444 | 442, 443 | imbi12d 344 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 = (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) → (((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘𝑛) = 0)) → 𝐵 < 𝑛) ↔ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾) ∧ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = 0)) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 < 𝑛))) |
| 445 | 438, 310,
444, 221 | vtoclf 3548 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾) ∧ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = 0)) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 < 𝑛) |
| 446 | 445 | adantlr 715 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) ∧ (𝑛 ∈ (1...𝑁) ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾) ∧ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = 0)) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 < 𝑛) |
| 447 | 434, 446 | syldan 591 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) ∧ (𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾) ∧ (𝑞‘𝑛) = 0)) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 < 𝑛) |
| 448 | | simp1 1136 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾) ∧ (𝑞‘𝑛) = 𝐾) → 𝑛 ∈ (1...(𝑚 + 1))) |
| 449 | 421 | anasss 466 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁) ∧ 𝑛 ∈ (1...(𝑚 + 1)))) → 𝑛 ∈ (1...𝑁)) |
| 450 | 448, 449 | sylanr2 683 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁) ∧ (𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾) ∧ (𝑞‘𝑛) = 𝐾))) → 𝑛 ∈ (1...𝑁)) |
| 451 | | simp2 1137 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾) ∧ (𝑞‘𝑛) = 𝐾) → 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) |
| 452 | 451, 302 | sylanr2 683 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁) ∧ (𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾) ∧ (𝑞‘𝑛) = 𝐾))) → (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾)) |
| 453 | 429 | 3adantr3 1172 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾) ∧ (𝑞‘𝑛) = 𝐾)) → ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = (𝑞‘𝑛)) |
| 454 | | simpr3 1197 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾) ∧ (𝑞‘𝑛) = 𝐾)) → (𝑞‘𝑛) = 𝐾) |
| 455 | 453, 454 | eqtrd 2771 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾) ∧ (𝑞‘𝑛) = 𝐾)) → ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = 𝐾) |
| 456 | 455 | anasss 466 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ (𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾) ∧ (𝑞‘𝑛) = 𝐾))) → ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = 𝐾) |
| 457 | 456 | adantrlr 723 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁) ∧ (𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾) ∧ (𝑞‘𝑛) = 𝐾))) → ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = 𝐾) |
| 458 | 450, 452,
457 | 3jca 1128 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁) ∧ (𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾) ∧ (𝑞‘𝑛) = 𝐾))) → (𝑛 ∈ (1...𝑁) ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾) ∧ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = 𝐾)) |
| 459 | | nfv 1914 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑝(𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾) ∧ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = 𝐾)) |
| 460 | | nfcv 2899 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑝(𝑛 − 1) |
| 461 | 304, 460 | nfne 3034 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑝⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ≠ (𝑛 − 1) |
| 462 | 459, 461 | nfim 1896 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑝((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾) ∧ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = 𝐾)) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ≠ (𝑛 − 1)) |
| 463 | 439 | eqeq1d 2738 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑝 = (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) → ((𝑝‘𝑛) = 𝐾 ↔ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = 𝐾)) |
| 464 | 311, 463 | 3anbi23d 1441 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑝 = (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) → ((𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘𝑛) = 𝐾) ↔ (𝑛 ∈ (1...𝑁) ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾) ∧ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = 𝐾))) |
| 465 | 464 | anbi2d 630 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑝 = (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) → ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘𝑛) = 𝐾)) ↔ (𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾) ∧ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = 𝐾)))) |
| 466 | 313 | neeq1d 2992 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑝 = (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) → (𝐵 ≠ (𝑛 − 1) ↔ ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ≠ (𝑛 − 1))) |
| 467 | 465, 466 | imbi12d 344 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 = (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) → (((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘𝑛) = 𝐾)) → 𝐵 ≠ (𝑛 − 1)) ↔ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾) ∧ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = 𝐾)) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ≠ (𝑛 − 1)))) |
| 468 | | poimirlem28.4 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘𝑛) = 𝐾)) → 𝐵 ≠ (𝑛 − 1)) |
| 469 | 462, 310,
467, 468 | vtoclf 3548 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾) ∧ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = 𝐾)) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ≠ (𝑛 − 1)) |
| 470 | 458, 469 | syldan 591 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁) ∧ (𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾) ∧ (𝑞‘𝑛) = 𝐾))) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ≠ (𝑛 − 1)) |
| 471 | 470 | anassrs 467 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) ∧ (𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾) ∧ (𝑞‘𝑛) = 𝐾)) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ≠ (𝑛 − 1)) |
| 472 | 265, 267,
418, 447, 471 | poimirlem27 37676 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → 2 ∥ ((♯‘{𝑡 ∈ ((((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd ‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}))) |
| 473 | 265, 267,
418 | poimirlem26 37675 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → 2 ∥ ((♯‘{𝑡 ∈ ((((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}))) |
| 474 | | fzfi 13995 |
. . . . . . . . . . . . . . . . . . 19
⊢
(0...(𝑚 + 1)) ∈
Fin |
| 475 | | xpfi 9335 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∈ Fin ∧ (0...(𝑚 + 1)) ∈ Fin) →
((((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∈ Fin) |
| 476 | 254, 474,
475 | mp2an 692 |
. . . . . . . . . . . . . . . . . 18
⊢
((((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∈ Fin |
| 477 | | rabfi 9280 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∈ Fin → {𝑡 ∈ ((((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵} ∈ Fin) |
| 478 | | hashcl 14379 |
. . . . . . . . . . . . . . . . . 18
⊢ ({𝑡 ∈ ((((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵} ∈ Fin → (♯‘{𝑡 ∈ ((((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st ‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ∈
ℕ0) |
| 479 | 476, 477,
478 | mp2b 10 |
. . . . . . . . . . . . . . . . 17
⊢
(♯‘{𝑡
∈ ((((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ∈ ℕ0 |
| 480 | 479 | nn0zi 12622 |
. . . . . . . . . . . . . . . 16
⊢
(♯‘{𝑡
∈ ((((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ∈ ℤ |
| 481 | | zsubcl 12639 |
. . . . . . . . . . . . . . . 16
⊢
(((♯‘{𝑡
∈ ((((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ∈ ℤ ∧ (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd ‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}) ∈ ℤ) →
((♯‘{𝑡 ∈
((((0..^𝐾) ↑m
(1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st ‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd ‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))})) ∈ ℤ) |
| 482 | 480, 262,
481 | mp2an 692 |
. . . . . . . . . . . . . . 15
⊢
((♯‘{𝑡
∈ ((((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd ‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))})) ∈ ℤ |
| 483 | | zsubcl 12639 |
. . . . . . . . . . . . . . . 16
⊢
(((♯‘{𝑡
∈ ((((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ∈ ℤ ∧ (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ∈ ℤ) →
((♯‘{𝑡 ∈
((((0..^𝐾) ↑m
(1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st ‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵})) ∈ ℤ) |
| 484 | 480, 258,
483 | mp2an 692 |
. . . . . . . . . . . . . . 15
⊢
((♯‘{𝑡
∈ ((((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵})) ∈ ℤ |
| 485 | | dvds2sub 16315 |
. . . . . . . . . . . . . . 15
⊢ ((2
∈ ℤ ∧ ((♯‘{𝑡 ∈ ((((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd ‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))})) ∈ ℤ ∧
((♯‘{𝑡 ∈
((((0..^𝐾) ↑m
(1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st ‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵})) ∈ ℤ) → ((2 ∥
((♯‘{𝑡 ∈
((((0..^𝐾) ↑m
(1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st ‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd ‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))})) ∧ 2 ∥
((♯‘{𝑡 ∈
((((0..^𝐾) ↑m
(1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st ‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}))) → 2 ∥ (((♯‘{𝑡 ∈ ((((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st ‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd ‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))})) − ((♯‘{𝑡 ∈ ((((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st ‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}))))) |
| 486 | 240, 482,
484, 485 | mp3an 1463 |
. . . . . . . . . . . . . 14
⊢ ((2
∥ ((♯‘{𝑡
∈ ((((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd ‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))})) ∧ 2 ∥
((♯‘{𝑡 ∈
((((0..^𝐾) ↑m
(1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st ‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}))) → 2 ∥ (((♯‘{𝑡 ∈ ((((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st ‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd ‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))})) − ((♯‘{𝑡 ∈ ((((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st ‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵})))) |
| 487 | 472, 473,
486 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → 2 ∥ (((♯‘{𝑡 ∈ ((((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd ‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))})) − ((♯‘{𝑡 ∈ ((((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st ‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵})))) |
| 488 | 479 | nn0cni 12518 |
. . . . . . . . . . . . . 14
⊢
(♯‘{𝑡
∈ ((((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ∈ ℂ |
| 489 | 261 | nn0cni 12518 |
. . . . . . . . . . . . . 14
⊢
(♯‘{𝑠
∈ (((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}) ∈ ℂ |
| 490 | 257 | nn0cni 12518 |
. . . . . . . . . . . . . 14
⊢
(♯‘{𝑠
∈ (((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ∈ ℂ |
| 491 | | nnncan1 11524 |
. . . . . . . . . . . . . 14
⊢
(((♯‘{𝑡
∈ ((((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ∈ ℂ ∧ (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd ‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}) ∈ ℂ ∧
(♯‘{𝑠 ∈
(((0..^𝐾) ↑m
(1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ∈ ℂ) →
(((♯‘{𝑡 ∈
((((0..^𝐾) ↑m
(1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st ‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd ‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))})) − ((♯‘{𝑡 ∈ ((((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st ‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}))) = ((♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd ‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}))) |
| 492 | 488, 489,
490, 491 | mp3an 1463 |
. . . . . . . . . . . . 13
⊢
(((♯‘{𝑡
∈ ((((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd ‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))})) − ((♯‘{𝑡 ∈ ((((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st ‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}))) = ((♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd ‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))})) |
| 493 | 487, 492 | breqtrdi 5165 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → 2 ∥ ((♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}))) |
| 494 | | dvdssub2 16325 |
. . . . . . . . . . . 12
⊢ (((2
∈ ℤ ∧ (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ∈ ℤ ∧
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}) ∈ ℤ) ∧ 2 ∥
((♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}))) → (2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ↔ 2 ∥ (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}))) |
| 495 | 263, 493,
494 | sylancr 587 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → (2 ∥ (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ↔ 2 ∥ (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}))) |
| 496 | | nn0cn 12516 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 ∈ ℕ0
→ 𝑚 ∈
ℂ) |
| 497 | | pncan1 11666 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 ∈ ℂ → ((𝑚 + 1) − 1) = 𝑚) |
| 498 | 496, 497 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 ∈ ℕ0
→ ((𝑚 + 1) − 1)
= 𝑚) |
| 499 | 498 | oveq2d 7426 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈ ℕ0
→ (0...((𝑚 + 1)
− 1)) = (0...𝑚)) |
| 500 | 499 | rexeqdv 3310 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈ ℕ0
→ (∃𝑗 ∈
(0...((𝑚 + 1) −
1))𝑖 =
⦋(((1st ‘𝑠) ∘f + ((((2nd
‘𝑠) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪
((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ ∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) |
| 501 | 499, 500 | raleqbidv 3329 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ ℕ0
→ (∀𝑖 ∈
(0...((𝑚 + 1) −
1))∃𝑗 ∈
(0...((𝑚 + 1) −
1))𝑖 =
⦋(((1st ‘𝑠) ∘f + ((((2nd
‘𝑠) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪
((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) |
| 502 | 501 | 3anbi1d 1442 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ ℕ0
→ ((∀𝑖 ∈
(0...((𝑚 + 1) −
1))∃𝑗 ∈
(0...((𝑚 + 1) −
1))𝑖 =
⦋(((1st ‘𝑠) ∘f + ((((2nd
‘𝑠) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪
((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1)) ↔ (∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1)))) |
| 503 | 502 | rabbidv 3428 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ ℕ0
→ {𝑠 ∈
(((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))} = {𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}) |
| 504 | 503 | fveq2d 6885 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ℕ0
→ (♯‘{𝑠
∈ (((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}) = (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))})) |
| 505 | 504 | ad2antrl 728 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}) = (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))})) |
| 506 | 1 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → 𝑁 ∈ ℕ) |
| 507 | 191 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → 𝐾 ∈ ℕ) |
| 508 | | simprl 770 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → 𝑚 ∈ ℕ0) |
| 509 | | simprr 772 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → 𝑚 < 𝑁) |
| 510 | 506, 507,
508, 509 | poimirlem4 37653 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑚)) × {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∣ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵} ≈ {𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}) |
| 511 | | fzfi 13995 |
. . . . . . . . . . . . . . . . . 18
⊢
(1...𝑚) ∈
Fin |
| 512 | | mapfi 9365 |
. . . . . . . . . . . . . . . . . 18
⊢
(((0..^𝐾) ∈ Fin
∧ (1...𝑚) ∈ Fin)
→ ((0..^𝐾)
↑m (1...𝑚))
∈ Fin) |
| 513 | 10, 511, 512 | mp2an 692 |
. . . . . . . . . . . . . . . . 17
⊢
((0..^𝐾)
↑m (1...𝑚))
∈ Fin |
| 514 | | ovex 7443 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(1...𝑚) ∈
V |
| 515 | 514, 514 | mapval 8857 |
. . . . . . . . . . . . . . . . . . 19
⊢
((1...𝑚)
↑m (1...𝑚))
= {𝑓 ∣ 𝑓:(1...𝑚)⟶(1...𝑚)} |
| 516 | | mapfi 9365 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((1...𝑚) ∈ Fin
∧ (1...𝑚) ∈ Fin)
→ ((1...𝑚)
↑m (1...𝑚))
∈ Fin) |
| 517 | 511, 511,
516 | mp2an 692 |
. . . . . . . . . . . . . . . . . . 19
⊢
((1...𝑚)
↑m (1...𝑚))
∈ Fin |
| 518 | 515, 517 | eqeltrri 2832 |
. . . . . . . . . . . . . . . . . 18
⊢ {𝑓 ∣ 𝑓:(1...𝑚)⟶(1...𝑚)} ∈ Fin |
| 519 | | f1of 6823 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓:(1...𝑚)–1-1-onto→(1...𝑚) → 𝑓:(1...𝑚)⟶(1...𝑚)) |
| 520 | 519 | ss2abi 4047 |
. . . . . . . . . . . . . . . . . 18
⊢ {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)} ⊆ {𝑓 ∣ 𝑓:(1...𝑚)⟶(1...𝑚)} |
| 521 | | ssfi 9192 |
. . . . . . . . . . . . . . . . . 18
⊢ (({𝑓 ∣ 𝑓:(1...𝑚)⟶(1...𝑚)} ∈ Fin ∧ {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)} ⊆ {𝑓 ∣ 𝑓:(1...𝑚)⟶(1...𝑚)}) → {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)} ∈ Fin) |
| 522 | 518, 520,
521 | mp2an 692 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)} ∈ Fin |
| 523 | | xpfi 9335 |
. . . . . . . . . . . . . . . . 17
⊢
((((0..^𝐾)
↑m (1...𝑚))
∈ Fin ∧ {𝑓 ∣
𝑓:(1...𝑚)–1-1-onto→(1...𝑚)} ∈ Fin) → (((0..^𝐾) ↑m (1...𝑚)) × {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∈ Fin) |
| 524 | 513, 522,
523 | mp2an 692 |
. . . . . . . . . . . . . . . 16
⊢
(((0..^𝐾)
↑m (1...𝑚))
× {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∈ Fin |
| 525 | | rabfi 9280 |
. . . . . . . . . . . . . . . 16
⊢
((((0..^𝐾)
↑m (1...𝑚))
× {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∈ Fin → {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑚)) × {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∣ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵} ∈ Fin) |
| 526 | 524, 525 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑚)) × {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∣ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵} ∈ Fin |
| 527 | | rabfi 9280 |
. . . . . . . . . . . . . . . 16
⊢
((((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∈ Fin → {𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))} ∈ Fin) |
| 528 | 254, 527 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ {𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))} ∈ Fin |
| 529 | | hashen 14370 |
. . . . . . . . . . . . . . 15
⊢ (({𝑠 ∈ (((0..^𝐾) ↑m (1...𝑚)) × {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∣ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵} ∈ Fin ∧ {𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))} ∈ Fin) →
((♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑚))
× {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∣ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) = (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}) ↔ {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑚)) × {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∣ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵} ≈ {𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))})) |
| 530 | 526, 528,
529 | mp2an 692 |
. . . . . . . . . . . . . 14
⊢
((♯‘{𝑠
∈ (((0..^𝐾)
↑m (1...𝑚))
× {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∣ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) = (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}) ↔ {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑚)) × {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∣ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵} ≈ {𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}) |
| 531 | 510, 530 | sylibr 234 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑚)) × {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∣ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) = (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))})) |
| 532 | 505, 531 | eqtr4d 2774 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}) = (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑚)) × {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∣ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵})) |
| 533 | 532 | breq2d 5136 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → (2 ∥ (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}) ↔ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑚))
× {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∣ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}))) |
| 534 | 495, 533 | bitrd 279 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → (2 ∥ (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ↔ 2 ∥ (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑚)) × {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∣ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}))) |
| 535 | 534 | biimpd 229 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → (2 ∥ (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) → 2 ∥ (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑚)) × {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∣ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}))) |
| 536 | 535 | con3d 152 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → (¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑚))
× {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∣ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) → ¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}))) |
| 537 | 536 | expcom 413 |
. . . . . . 7
⊢ ((𝑚 ∈ ℕ0
∧ 𝑚 < 𝑁) → (𝜑 → (¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑚))
× {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∣ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) → ¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵})))) |
| 538 | 537 | a2d 29 |
. . . . . 6
⊢ ((𝑚 ∈ ℕ0
∧ 𝑚 < 𝑁) → ((𝜑 → ¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑚))
× {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∣ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵})) → (𝜑 → ¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵})))) |
| 539 | 538 | 3adant1 1130 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑚 ∈
ℕ0 ∧ 𝑚
< 𝑁) → ((𝜑 → ¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑚))
× {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∣ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵})) → (𝜑 → ¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵})))) |
| 540 | 107, 132,
157, 182, 239, 539 | fnn0ind 12697 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑁
≤ 𝑁) → (𝜑 → ¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}))) |
| 541 | 5, 540 | mpcom 38 |
. . 3
⊢ (𝜑 → ¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) / 𝑝⦌𝐵})) |
| 542 | | dvds0 16296 |
. . . . . . . 8
⊢ (2 ∈
ℤ → 2 ∥ 0) |
| 543 | 240, 542 | ax-mp 5 |
. . . . . . 7
⊢ 2 ∥
0 |
| 544 | | hash0 14390 |
. . . . . . 7
⊢
(♯‘∅) = 0 |
| 545 | 543, 544 | breqtrri 5151 |
. . . . . 6
⊢ 2 ∥
(♯‘∅) |
| 546 | | fveq2 6881 |
. . . . . 6
⊢ ({𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶} = ∅ → (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶}) =
(♯‘∅)) |
| 547 | 545, 546 | breqtrrid 5162 |
. . . . 5
⊢ ({𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶} = ∅ → 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶})) |
| 548 | 3 | ltp1d 12177 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑁 < (𝑁 + 1)) |
| 549 | 282 | peano2zd 12705 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑁 + 1) ∈ ℤ) |
| 550 | | fzn 13562 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < (𝑁 + 1) ↔ ((𝑁 + 1)...𝑁) = ∅)) |
| 551 | 549, 282,
550 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑁 < (𝑁 + 1) ↔ ((𝑁 + 1)...𝑁) = ∅)) |
| 552 | 548, 551 | mpbid 232 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑁 + 1)...𝑁) = ∅) |
| 553 | 552 | xpeq1d 5688 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (((𝑁 + 1)...𝑁) × {0}) = (∅ ×
{0})) |
| 554 | 553, 86 | eqtrdi 2787 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (((𝑁 + 1)...𝑁) × {0}) = ∅) |
| 555 | 554 | uneq2d 4148 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) = (((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪
∅)) |
| 556 | | un0 4374 |
. . . . . . . . . . . . . 14
⊢
(((1st ‘𝑠) ∘f + ((((2nd
‘𝑠) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...𝑁)) × {0}))) ∪ ∅)
= ((1st ‘𝑠) ∘f + ((((2nd
‘𝑠) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...𝑁)) ×
{0}))) |
| 557 | 555, 556 | eqtrdi 2787 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) = ((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))) |
| 558 | 557 | csbeq1d 3883 |
. . . . . . . . . . . 12
⊢ (𝜑 →
⦋(((1st ‘𝑠) ∘f + ((((2nd
‘𝑠) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 = ⦋((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) / 𝑝⦌𝐵) |
| 559 | | ovex 7443 |
. . . . . . . . . . . . 13
⊢
((1st ‘𝑠) ∘f + ((((2nd
‘𝑠) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...𝑁)) × {0}))) ∈
V |
| 560 | | poimirlem28.1 |
. . . . . . . . . . . . 13
⊢ (𝑝 = ((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → 𝐵 = 𝐶) |
| 561 | 559, 560 | csbie 3914 |
. . . . . . . . . . . 12
⊢
⦋((1st ‘𝑠) ∘f + ((((2nd
‘𝑠) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...𝑁)) × {0}))) / 𝑝⦌𝐵 = 𝐶 |
| 562 | 558, 561 | eqtrdi 2787 |
. . . . . . . . . . 11
⊢ (𝜑 →
⦋(((1st ‘𝑠) ∘f + ((((2nd
‘𝑠) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 = 𝐶) |
| 563 | 562 | eqeq2d 2747 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ 𝑖 = 𝐶)) |
| 564 | 563 | rexbidv 3165 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ ∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶)) |
| 565 | 564 | ralbidv 3164 |
. . . . . . . 8
⊢ (𝜑 → (∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶)) |
| 566 | 565 | rabbidv 3428 |
. . . . . . 7
⊢ (𝜑 → {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) / 𝑝⦌𝐵} = {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶}) |
| 567 | 566 | fveq2d 6885 |
. . . . . 6
⊢ (𝜑 → (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) = (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶})) |
| 568 | 567 | breq2d 5136 |
. . . . 5
⊢ (𝜑 → (2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ↔ 2 ∥ (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶}))) |
| 569 | 547, 568 | imbitrrid 246 |
. . . 4
⊢ (𝜑 → ({𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶} = ∅ → 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}))) |
| 570 | 569 | necon3bd 2947 |
. . 3
⊢ (𝜑 → (¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) → {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶} ≠ ∅)) |
| 571 | 541, 570 | mpd 15 |
. 2
⊢ (𝜑 → {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶} ≠ ∅) |
| 572 | | rabn0 4369 |
. 2
⊢ ({𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶} ≠ ∅ ↔ ∃𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶) |
| 573 | 571, 572 | sylib 218 |
1
⊢ (𝜑 → ∃𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶) |