| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | poimir.0 | . . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℕ) | 
| 2 | 1 | nnnn0d 12589 | . . . . 5
⊢ (𝜑 → 𝑁 ∈
ℕ0) | 
| 3 | 1 | nnred 12282 | . . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℝ) | 
| 4 | 3 | leidd 11830 | . . . . 5
⊢ (𝜑 → 𝑁 ≤ 𝑁) | 
| 5 | 2, 2, 4 | 3jca 1128 | . . . 4
⊢ (𝜑 → (𝑁 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0
∧ 𝑁 ≤ 𝑁)) | 
| 6 |  | oveq2 7440 | . . . . . . . . . . . . . . . 16
⊢ (𝑘 = 0 → (1...𝑘) = (1...0)) | 
| 7 |  | fz10 13586 | . . . . . . . . . . . . . . . 16
⊢ (1...0) =
∅ | 
| 8 | 6, 7 | eqtrdi 2792 | . . . . . . . . . . . . . . 15
⊢ (𝑘 = 0 → (1...𝑘) = ∅) | 
| 9 | 8 | oveq2d 7448 | . . . . . . . . . . . . . 14
⊢ (𝑘 = 0 → ((0..^𝐾) ↑m (1...𝑘)) = ((0..^𝐾) ↑m
∅)) | 
| 10 |  | fzofi 14016 | . . . . . . . . . . . . . . . 16
⊢
(0..^𝐾) ∈
Fin | 
| 11 |  | map0e 8923 | . . . . . . . . . . . . . . . 16
⊢
((0..^𝐾) ∈ Fin
→ ((0..^𝐾)
↑m ∅) = 1o) | 
| 12 | 10, 11 | ax-mp 5 | . . . . . . . . . . . . . . 15
⊢
((0..^𝐾)
↑m ∅) = 1o | 
| 13 |  | df1o2 8514 | . . . . . . . . . . . . . . 15
⊢
1o = {∅} | 
| 14 | 12, 13 | eqtri 2764 | . . . . . . . . . . . . . 14
⊢
((0..^𝐾)
↑m ∅) = {∅} | 
| 15 | 9, 14 | eqtrdi 2792 | . . . . . . . . . . . . 13
⊢ (𝑘 = 0 → ((0..^𝐾) ↑m (1...𝑘)) = {∅}) | 
| 16 |  | eqidd 2737 | . . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 0 → 𝑓 = 𝑓) | 
| 17 | 16, 8, 8 | f1oeq123d 6841 | . . . . . . . . . . . . . . . 16
⊢ (𝑘 = 0 → (𝑓:(1...𝑘)–1-1-onto→(1...𝑘) ↔ 𝑓:∅–1-1-onto→∅)) | 
| 18 |  | eqid 2736 | . . . . . . . . . . . . . . . . 17
⊢ ∅ =
∅ | 
| 19 |  | f1o00 6882 | . . . . . . . . . . . . . . . . 17
⊢ (𝑓:∅–1-1-onto→∅ ↔ (𝑓 = ∅ ∧ ∅ =
∅)) | 
| 20 | 18, 19 | mpbiran2 710 | . . . . . . . . . . . . . . . 16
⊢ (𝑓:∅–1-1-onto→∅ ↔ 𝑓 = ∅) | 
| 21 | 17, 20 | bitrdi 287 | . . . . . . . . . . . . . . 15
⊢ (𝑘 = 0 → (𝑓:(1...𝑘)–1-1-onto→(1...𝑘) ↔ 𝑓 = ∅)) | 
| 22 | 21 | abbidv 2807 | . . . . . . . . . . . . . 14
⊢ (𝑘 = 0 → {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)} = {𝑓 ∣ 𝑓 = ∅}) | 
| 23 |  | df-sn 4626 | . . . . . . . . . . . . . 14
⊢ {∅}
= {𝑓 ∣ 𝑓 = ∅} | 
| 24 | 22, 23 | eqtr4di 2794 | . . . . . . . . . . . . 13
⊢ (𝑘 = 0 → {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)} = {∅}) | 
| 25 | 15, 24 | xpeq12d 5715 | . . . . . . . . . . . 12
⊢ (𝑘 = 0 → (((0..^𝐾) ↑m (1...𝑘)) × {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) = ({∅} ×
{∅})) | 
| 26 |  | 0ex 5306 | . . . . . . . . . . . . 13
⊢ ∅
∈ V | 
| 27 | 26, 26 | xpsn 7160 | . . . . . . . . . . . 12
⊢
({∅} × {∅}) = {〈∅,
∅〉} | 
| 28 | 25, 27 | eqtr2di 2793 | . . . . . . . . . . 11
⊢ (𝑘 = 0 → {〈∅,
∅〉} = (((0..^𝐾)
↑m (1...𝑘))
× {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)})) | 
| 29 |  | elsni 4642 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 ∈ {〈∅,
∅〉} → 𝑠 =
〈∅, ∅〉) | 
| 30 | 26, 26 | op1std 8025 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 = 〈∅, ∅〉
→ (1st ‘𝑠) = ∅) | 
| 31 | 29, 30 | syl 17 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑠 ∈ {〈∅,
∅〉} → (1st ‘𝑠) = ∅) | 
| 32 | 31 | oveq1d 7447 | . . . . . . . . . . . . . . . . 17
⊢ (𝑠 ∈ {〈∅,
∅〉} → ((1st ‘𝑠) ∘f + ∅) = (∅
∘f + ∅)) | 
| 33 |  | f0 6788 | . . . . . . . . . . . . . . . . . . . 20
⊢
∅:∅⟶∅ | 
| 34 |  | ffn 6735 | . . . . . . . . . . . . . . . . . . . 20
⊢
(∅:∅⟶∅ → ∅ Fn
∅) | 
| 35 | 33, 34 | mp1i 13 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 ∈ {〈∅,
∅〉} → ∅ Fn ∅) | 
| 36 | 26 | a1i 11 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 ∈ {〈∅,
∅〉} → ∅ ∈ V) | 
| 37 |  | inidm 4226 | . . . . . . . . . . . . . . . . . . 19
⊢ (∅
∩ ∅) = ∅ | 
| 38 |  | 0fv 6949 | . . . . . . . . . . . . . . . . . . . 20
⊢
(∅‘𝑛) =
∅ | 
| 39 | 38 | a1i 11 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑠 ∈ {〈∅,
∅〉} ∧ 𝑛
∈ ∅) → (∅‘𝑛) = ∅) | 
| 40 | 35, 35, 36, 36, 37, 39, 39 | offval 7707 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑠 ∈ {〈∅,
∅〉} → (∅ ∘f + ∅) = (𝑛 ∈ ∅ ↦ (∅
+ ∅))) | 
| 41 |  | mpt0 6709 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ∅ ↦ (∅
+ ∅)) = ∅ | 
| 42 | 40, 41 | eqtrdi 2792 | . . . . . . . . . . . . . . . . 17
⊢ (𝑠 ∈ {〈∅,
∅〉} → (∅ ∘f + ∅) =
∅) | 
| 43 | 32, 42 | eqtrd 2776 | . . . . . . . . . . . . . . . 16
⊢ (𝑠 ∈ {〈∅,
∅〉} → ((1st ‘𝑠) ∘f + ∅) =
∅) | 
| 44 | 43 | uneq1d 4166 | . . . . . . . . . . . . . . 15
⊢ (𝑠 ∈ {〈∅,
∅〉} → (((1st ‘𝑠) ∘f + ∅) ∪
((1...𝑁) × {0})) =
(∅ ∪ ((1...𝑁)
× {0}))) | 
| 45 |  | uncom 4157 | . . . . . . . . . . . . . . . 16
⊢ (∅
∪ ((1...𝑁) ×
{0})) = (((1...𝑁) ×
{0}) ∪ ∅) | 
| 46 |  | un0 4393 | . . . . . . . . . . . . . . . 16
⊢
(((1...𝑁) ×
{0}) ∪ ∅) = ((1...𝑁) × {0}) | 
| 47 | 45, 46 | eqtri 2764 | . . . . . . . . . . . . . . 15
⊢ (∅
∪ ((1...𝑁) ×
{0})) = ((1...𝑁) ×
{0}) | 
| 48 | 44, 47 | eqtr2di 2793 | . . . . . . . . . . . . . 14
⊢ (𝑠 ∈ {〈∅,
∅〉} → ((1...𝑁) × {0}) = (((1st
‘𝑠)
∘f + ∅) ∪ ((1...𝑁) × {0}))) | 
| 49 | 48 | csbeq1d 3902 | . . . . . . . . . . . . 13
⊢ (𝑠 ∈ {〈∅,
∅〉} → ⦋((1...𝑁) × {0}) / 𝑝⦌𝐵 = ⦋(((1st
‘𝑠)
∘f + ∅) ∪ ((1...𝑁) × {0})) / 𝑝⦌𝐵) | 
| 50 | 49 | eqeq2d 2747 | . . . . . . . . . . . 12
⊢ (𝑠 ∈ {〈∅,
∅〉} → (0 = ⦋((1...𝑁) × {0}) / 𝑝⦌𝐵 ↔ 0 = ⦋(((1st
‘𝑠)
∘f + ∅) ∪ ((1...𝑁) × {0})) / 𝑝⦌𝐵)) | 
| 51 |  | oveq2 7440 | . . . . . . . . . . . . . . 15
⊢ (𝑘 = 0 → (0...𝑘) = (0...0)) | 
| 52 |  | 0z 12626 | . . . . . . . . . . . . . . . 16
⊢ 0 ∈
ℤ | 
| 53 |  | fzsn 13607 | . . . . . . . . . . . . . . . 16
⊢ (0 ∈
ℤ → (0...0) = {0}) | 
| 54 | 52, 53 | ax-mp 5 | . . . . . . . . . . . . . . 15
⊢ (0...0) =
{0} | 
| 55 | 51, 54 | eqtrdi 2792 | . . . . . . . . . . . . . 14
⊢ (𝑘 = 0 → (0...𝑘) = {0}) | 
| 56 |  | oveq2 7440 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = 0 → ((𝑗 + 1)...𝑘) = ((𝑗 + 1)...0)) | 
| 57 | 56 | imaeq2d 6077 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = 0 → ((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) = ((2nd ‘𝑠) “ ((𝑗 + 1)...0))) | 
| 58 | 57 | xpeq1d 5713 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 0 → (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}) = (((2nd
‘𝑠) “ ((𝑗 + 1)...0)) ×
{0})) | 
| 59 | 58 | uneq2d 4167 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 0 → ((((2nd
‘𝑠) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...𝑘)) × {0})) =
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...0)) ×
{0}))) | 
| 60 | 59 | oveq2d 7448 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 0 → ((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) = ((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...0)) ×
{0})))) | 
| 61 |  | oveq1 7439 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = 0 → (𝑘 + 1) = (0 + 1)) | 
| 62 |  | 0p1e1 12389 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (0 + 1) =
1 | 
| 63 | 61, 62 | eqtrdi 2792 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 0 → (𝑘 + 1) = 1) | 
| 64 | 63 | oveq1d 7447 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 0 → ((𝑘 + 1)...𝑁) = (1...𝑁)) | 
| 65 | 64 | xpeq1d 5713 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 0 → (((𝑘 + 1)...𝑁) × {0}) = ((1...𝑁) × {0})) | 
| 66 | 60, 65 | uneq12d 4168 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 0 → (((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) = (((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...0)) × {0}))) ∪
((1...𝑁) ×
{0}))) | 
| 67 | 66 | csbeq1d 3902 | . . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 0 →
⦋(((1st ‘𝑠) ∘f + ((((2nd
‘𝑠) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...0)) × {0}))) ∪
((1...𝑁) × {0})) /
𝑝⦌𝐵) | 
| 68 | 67 | eqeq2d 2747 | . . . . . . . . . . . . . . . 16
⊢ (𝑘 = 0 → (𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ 𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...0)) × {0}))) ∪
((1...𝑁) × {0})) /
𝑝⦌𝐵)) | 
| 69 | 55, 68 | rexeqbidv 3346 | . . . . . . . . . . . . . . 15
⊢ (𝑘 = 0 → (∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ ∃𝑗 ∈ {0}𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...0)) × {0}))) ∪
((1...𝑁) × {0})) /
𝑝⦌𝐵)) | 
| 70 |  | c0ex 11256 | . . . . . . . . . . . . . . . 16
⊢ 0 ∈
V | 
| 71 |  | oveq2 7440 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 = 0 → (1...𝑗) = (1...0)) | 
| 72 | 71, 7 | eqtrdi 2792 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 = 0 → (1...𝑗) = ∅) | 
| 73 | 72 | imaeq2d 6077 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 = 0 → ((2nd
‘𝑠) “
(1...𝑗)) = ((2nd
‘𝑠) “
∅)) | 
| 74 |  | ima0 6094 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((2nd ‘𝑠) “ ∅) = ∅ | 
| 75 | 73, 74 | eqtrdi 2792 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 = 0 → ((2nd
‘𝑠) “
(1...𝑗)) =
∅) | 
| 76 | 75 | xpeq1d 5713 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 = 0 → (((2nd
‘𝑠) “
(1...𝑗)) × {1}) =
(∅ × {1})) | 
| 77 |  | 0xp 5783 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (∅
× {1}) = ∅ | 
| 78 | 76, 77 | eqtrdi 2792 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = 0 → (((2nd
‘𝑠) “
(1...𝑗)) × {1}) =
∅) | 
| 79 |  | oveq1 7439 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 = 0 → (𝑗 + 1) = (0 + 1)) | 
| 80 | 79, 62 | eqtrdi 2792 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑗 = 0 → (𝑗 + 1) = 1) | 
| 81 | 80 | oveq1d 7447 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 = 0 → ((𝑗 + 1)...0) = (1...0)) | 
| 82 | 81, 7 | eqtrdi 2792 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 = 0 → ((𝑗 + 1)...0) = ∅) | 
| 83 | 82 | imaeq2d 6077 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 = 0 → ((2nd
‘𝑠) “ ((𝑗 + 1)...0)) = ((2nd
‘𝑠) “
∅)) | 
| 84 | 83, 74 | eqtrdi 2792 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 = 0 → ((2nd
‘𝑠) “ ((𝑗 + 1)...0)) =
∅) | 
| 85 | 84 | xpeq1d 5713 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 = 0 → (((2nd
‘𝑠) “ ((𝑗 + 1)...0)) × {0}) =
(∅ × {0})) | 
| 86 |  | 0xp 5783 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (∅
× {0}) = ∅ | 
| 87 | 85, 86 | eqtrdi 2792 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = 0 → (((2nd
‘𝑠) “ ((𝑗 + 1)...0)) × {0}) =
∅) | 
| 88 | 78, 87 | uneq12d 4168 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = 0 → ((((2nd
‘𝑠) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...0))
× {0})) = (∅ ∪ ∅)) | 
| 89 |  | un0 4393 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (∅
∪ ∅) = ∅ | 
| 90 | 88, 89 | eqtrdi 2792 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = 0 → ((((2nd
‘𝑠) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...0))
× {0})) = ∅) | 
| 91 | 90 | oveq2d 7448 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = 0 → ((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...0)) × {0}))) =
((1st ‘𝑠)
∘f + ∅)) | 
| 92 | 91 | uneq1d 4166 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = 0 → (((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...0)) × {0}))) ∪
((1...𝑁) × {0})) =
(((1st ‘𝑠)
∘f + ∅) ∪ ((1...𝑁) × {0}))) | 
| 93 | 92 | csbeq1d 3902 | . . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 0 →
⦋(((1st ‘𝑠) ∘f + ((((2nd
‘𝑠) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...0))
× {0}))) ∪ ((1...𝑁) × {0})) / 𝑝⦌𝐵 = ⦋(((1st
‘𝑠)
∘f + ∅) ∪ ((1...𝑁) × {0})) / 𝑝⦌𝐵) | 
| 94 | 93 | eqeq2d 2747 | . . . . . . . . . . . . . . . 16
⊢ (𝑗 = 0 → (𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...0)) × {0}))) ∪
((1...𝑁) × {0})) /
𝑝⦌𝐵 ↔ 𝑖 = ⦋(((1st
‘𝑠)
∘f + ∅) ∪ ((1...𝑁) × {0})) / 𝑝⦌𝐵)) | 
| 95 | 70, 94 | rexsn 4681 | . . . . . . . . . . . . . . 15
⊢
(∃𝑗 ∈
{0}𝑖 =
⦋(((1st ‘𝑠) ∘f + ((((2nd
‘𝑠) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...0))
× {0}))) ∪ ((1...𝑁) × {0})) / 𝑝⦌𝐵 ↔ 𝑖 = ⦋(((1st
‘𝑠)
∘f + ∅) ∪ ((1...𝑁) × {0})) / 𝑝⦌𝐵) | 
| 96 | 69, 95 | bitrdi 287 | . . . . . . . . . . . . . 14
⊢ (𝑘 = 0 → (∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ 𝑖 = ⦋(((1st
‘𝑠)
∘f + ∅) ∪ ((1...𝑁) × {0})) / 𝑝⦌𝐵)) | 
| 97 | 55, 96 | raleqbidv 3345 | . . . . . . . . . . . . 13
⊢ (𝑘 = 0 → (∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ ∀𝑖 ∈ {0}𝑖 = ⦋(((1st
‘𝑠)
∘f + ∅) ∪ ((1...𝑁) × {0})) / 𝑝⦌𝐵)) | 
| 98 |  | eqeq1 2740 | . . . . . . . . . . . . . 14
⊢ (𝑖 = 0 → (𝑖 = ⦋(((1st
‘𝑠)
∘f + ∅) ∪ ((1...𝑁) × {0})) / 𝑝⦌𝐵 ↔ 0 = ⦋(((1st
‘𝑠)
∘f + ∅) ∪ ((1...𝑁) × {0})) / 𝑝⦌𝐵)) | 
| 99 | 70, 98 | ralsn 4680 | . . . . . . . . . . . . 13
⊢
(∀𝑖 ∈
{0}𝑖 =
⦋(((1st ‘𝑠) ∘f + ∅) ∪
((1...𝑁) × {0})) /
𝑝⦌𝐵 ↔ 0 =
⦋(((1st ‘𝑠) ∘f + ∅) ∪
((1...𝑁) × {0})) /
𝑝⦌𝐵) | 
| 100 | 97, 99 | bitr2di 288 | . . . . . . . . . . . 12
⊢ (𝑘 = 0 → (0 =
⦋(((1st ‘𝑠) ∘f + ∅) ∪
((1...𝑁) × {0})) /
𝑝⦌𝐵 ↔ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) | 
| 101 | 50, 100 | sylan9bbr 510 | . . . . . . . . . . 11
⊢ ((𝑘 = 0 ∧ 𝑠 ∈ {〈∅, ∅〉})
→ (0 = ⦋((1...𝑁) × {0}) / 𝑝⦌𝐵 ↔ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) | 
| 102 | 28, 101 | rabeqbidva 3452 | . . . . . . . . . 10
⊢ (𝑘 = 0 → {𝑠 ∈ {〈∅, ∅〉}
∣ 0 = ⦋((1...𝑁) × {0}) / 𝑝⦌𝐵} = {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑘)) × {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) ∣ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) | 
| 103 | 102 | eqcomd 2742 | . . . . . . . . 9
⊢ (𝑘 = 0 → {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑘)) × {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) ∣ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵} = {𝑠 ∈ {〈∅, ∅〉}
∣ 0 = ⦋((1...𝑁) × {0}) / 𝑝⦌𝐵}) | 
| 104 | 103 | fveq2d 6909 | . . . . . . . 8
⊢ (𝑘 = 0 →
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑘))
× {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) ∣ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) = (♯‘{𝑠 ∈ {〈∅, ∅〉}
∣ 0 = ⦋((1...𝑁) × {0}) / 𝑝⦌𝐵})) | 
| 105 | 104 | breq2d 5154 | . . . . . . 7
⊢ (𝑘 = 0 → (2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑘))
× {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) ∣ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ↔ 2 ∥ (♯‘{𝑠 ∈ {〈∅,
∅〉} ∣ 0 = ⦋((1...𝑁) × {0}) / 𝑝⦌𝐵}))) | 
| 106 | 105 | notbid 318 | . . . . . 6
⊢ (𝑘 = 0 → (¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑘))
× {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) ∣ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ↔ ¬ 2 ∥
(♯‘{𝑠 ∈
{〈∅, ∅〉} ∣ 0 = ⦋((1...𝑁) × {0}) / 𝑝⦌𝐵}))) | 
| 107 | 106 | imbi2d 340 | . . . . 5
⊢ (𝑘 = 0 → ((𝜑 → ¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑘))
× {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) ∣ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵})) ↔ (𝜑 → ¬ 2 ∥
(♯‘{𝑠 ∈
{〈∅, ∅〉} ∣ 0 = ⦋((1...𝑁) × {0}) / 𝑝⦌𝐵})))) | 
| 108 |  | oveq2 7440 | . . . . . . . . . . . 12
⊢ (𝑘 = 𝑚 → (1...𝑘) = (1...𝑚)) | 
| 109 | 108 | oveq2d 7448 | . . . . . . . . . . 11
⊢ (𝑘 = 𝑚 → ((0..^𝐾) ↑m (1...𝑘)) = ((0..^𝐾) ↑m (1...𝑚))) | 
| 110 |  | eqidd 2737 | . . . . . . . . . . . . 13
⊢ (𝑘 = 𝑚 → 𝑓 = 𝑓) | 
| 111 | 110, 108,
108 | f1oeq123d 6841 | . . . . . . . . . . . 12
⊢ (𝑘 = 𝑚 → (𝑓:(1...𝑘)–1-1-onto→(1...𝑘) ↔ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚))) | 
| 112 | 111 | abbidv 2807 | . . . . . . . . . . 11
⊢ (𝑘 = 𝑚 → {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)} = {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) | 
| 113 | 109, 112 | xpeq12d 5715 | . . . . . . . . . 10
⊢ (𝑘 = 𝑚 → (((0..^𝐾) ↑m (1...𝑘)) × {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) = (((0..^𝐾) ↑m (1...𝑚)) × {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)})) | 
| 114 |  | oveq2 7440 | . . . . . . . . . . 11
⊢ (𝑘 = 𝑚 → (0...𝑘) = (0...𝑚)) | 
| 115 |  | oveq2 7440 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑚 → ((𝑗 + 1)...𝑘) = ((𝑗 + 1)...𝑚)) | 
| 116 | 115 | imaeq2d 6077 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑚 → ((2nd ‘𝑠) “ ((𝑗 + 1)...𝑘)) = ((2nd ‘𝑠) “ ((𝑗 + 1)...𝑚))) | 
| 117 | 116 | xpeq1d 5713 | . . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑚 → (((2nd ‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}) = (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0})) | 
| 118 | 117 | uneq2d 4167 | . . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑚 → ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...𝑘)) × {0})) =
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) | 
| 119 | 118 | oveq2d 7448 | . . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑚 → ((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) = ((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0})))) | 
| 120 |  | oveq1 7439 | . . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑚 → (𝑘 + 1) = (𝑚 + 1)) | 
| 121 | 120 | oveq1d 7447 | . . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑚 → ((𝑘 + 1)...𝑁) = ((𝑚 + 1)...𝑁)) | 
| 122 | 121 | xpeq1d 5713 | . . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑚 → (((𝑘 + 1)...𝑁) × {0}) = (((𝑚 + 1)...𝑁) × {0})) | 
| 123 | 119, 122 | uneq12d 4168 | . . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑚 → (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) = (((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0}))) | 
| 124 | 123 | csbeq1d 3902 | . . . . . . . . . . . . 13
⊢ (𝑘 = 𝑚 → ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵) | 
| 125 | 124 | eqeq2d 2747 | . . . . . . . . . . . 12
⊢ (𝑘 = 𝑚 → (𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ 𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) | 
| 126 | 114, 125 | rexeqbidv 3346 | . . . . . . . . . . 11
⊢ (𝑘 = 𝑚 → (∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ ∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) | 
| 127 | 114, 126 | raleqbidv 3345 | . . . . . . . . . 10
⊢ (𝑘 = 𝑚 → (∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) | 
| 128 | 113, 127 | rabeqbidv 3454 | . . . . . . . . 9
⊢ (𝑘 = 𝑚 → {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑘)) × {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) ∣ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵} = {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑚)) × {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∣ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) | 
| 129 | 128 | fveq2d 6909 | . . . . . . . 8
⊢ (𝑘 = 𝑚 → (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑘)) × {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) ∣ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) = (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑚)) × {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∣ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵})) | 
| 130 | 129 | breq2d 5154 | . . . . . . 7
⊢ (𝑘 = 𝑚 → (2 ∥ (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑘)) × {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) ∣ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ↔ 2 ∥ (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑚)) × {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∣ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}))) | 
| 131 | 130 | notbid 318 | . . . . . 6
⊢ (𝑘 = 𝑚 → (¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑘))
× {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) ∣ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ↔ ¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑚))
× {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∣ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}))) | 
| 132 | 131 | imbi2d 340 | . . . . 5
⊢ (𝑘 = 𝑚 → ((𝜑 → ¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑘))
× {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) ∣ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵})) ↔ (𝜑 → ¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑚))
× {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∣ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵})))) | 
| 133 |  | oveq2 7440 | . . . . . . . . . . . 12
⊢ (𝑘 = (𝑚 + 1) → (1...𝑘) = (1...(𝑚 + 1))) | 
| 134 | 133 | oveq2d 7448 | . . . . . . . . . . 11
⊢ (𝑘 = (𝑚 + 1) → ((0..^𝐾) ↑m (1...𝑘)) = ((0..^𝐾) ↑m (1...(𝑚 + 1)))) | 
| 135 |  | eqidd 2737 | . . . . . . . . . . . . 13
⊢ (𝑘 = (𝑚 + 1) → 𝑓 = 𝑓) | 
| 136 | 135, 133,
133 | f1oeq123d 6841 | . . . . . . . . . . . 12
⊢ (𝑘 = (𝑚 + 1) → (𝑓:(1...𝑘)–1-1-onto→(1...𝑘) ↔ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1)))) | 
| 137 | 136 | abbidv 2807 | . . . . . . . . . . 11
⊢ (𝑘 = (𝑚 + 1) → {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)} = {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) | 
| 138 | 134, 137 | xpeq12d 5715 | . . . . . . . . . 10
⊢ (𝑘 = (𝑚 + 1) → (((0..^𝐾) ↑m (1...𝑘)) × {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) = (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))})) | 
| 139 |  | oveq2 7440 | . . . . . . . . . . 11
⊢ (𝑘 = (𝑚 + 1) → (0...𝑘) = (0...(𝑚 + 1))) | 
| 140 |  | oveq2 7440 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = (𝑚 + 1) → ((𝑗 + 1)...𝑘) = ((𝑗 + 1)...(𝑚 + 1))) | 
| 141 | 140 | imaeq2d 6077 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = (𝑚 + 1) → ((2nd ‘𝑠) “ ((𝑗 + 1)...𝑘)) = ((2nd ‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1)))) | 
| 142 | 141 | xpeq1d 5713 | . . . . . . . . . . . . . . . . 17
⊢ (𝑘 = (𝑚 + 1) → (((2nd ‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}) = (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0})) | 
| 143 | 142 | uneq2d 4167 | . . . . . . . . . . . . . . . 16
⊢ (𝑘 = (𝑚 + 1) → ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...𝑘)) × {0})) =
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) | 
| 144 | 143 | oveq2d 7448 | . . . . . . . . . . . . . . 15
⊢ (𝑘 = (𝑚 + 1) → ((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) = ((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0})))) | 
| 145 |  | oveq1 7439 | . . . . . . . . . . . . . . . . 17
⊢ (𝑘 = (𝑚 + 1) → (𝑘 + 1) = ((𝑚 + 1) + 1)) | 
| 146 | 145 | oveq1d 7447 | . . . . . . . . . . . . . . . 16
⊢ (𝑘 = (𝑚 + 1) → ((𝑘 + 1)...𝑁) = (((𝑚 + 1) + 1)...𝑁)) | 
| 147 | 146 | xpeq1d 5713 | . . . . . . . . . . . . . . 15
⊢ (𝑘 = (𝑚 + 1) → (((𝑘 + 1)...𝑁) × {0}) = ((((𝑚 + 1) + 1)...𝑁) × {0})) | 
| 148 | 144, 147 | uneq12d 4168 | . . . . . . . . . . . . . 14
⊢ (𝑘 = (𝑚 + 1) → (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) = (((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))) | 
| 149 | 148 | csbeq1d 3902 | . . . . . . . . . . . . 13
⊢ (𝑘 = (𝑚 + 1) → ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵) | 
| 150 | 149 | eqeq2d 2747 | . . . . . . . . . . . 12
⊢ (𝑘 = (𝑚 + 1) → (𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ 𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) | 
| 151 | 139, 150 | rexeqbidv 3346 | . . . . . . . . . . 11
⊢ (𝑘 = (𝑚 + 1) → (∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ ∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) | 
| 152 | 139, 151 | raleqbidv 3345 | . . . . . . . . . 10
⊢ (𝑘 = (𝑚 + 1) → (∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) | 
| 153 | 138, 152 | rabeqbidv 3454 | . . . . . . . . 9
⊢ (𝑘 = (𝑚 + 1) → {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑘)) × {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) ∣ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵} = {𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) | 
| 154 | 153 | fveq2d 6909 | . . . . . . . 8
⊢ (𝑘 = (𝑚 + 1) → (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑘)) × {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) ∣ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) = (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵})) | 
| 155 | 154 | breq2d 5154 | . . . . . . 7
⊢ (𝑘 = (𝑚 + 1) → (2 ∥ (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑘)) × {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) ∣ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ↔ 2 ∥ (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}))) | 
| 156 | 155 | notbid 318 | . . . . . 6
⊢ (𝑘 = (𝑚 + 1) → (¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑘))
× {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) ∣ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ↔ ¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}))) | 
| 157 | 156 | imbi2d 340 | . . . . 5
⊢ (𝑘 = (𝑚 + 1) → ((𝜑 → ¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑘))
× {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) ∣ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵})) ↔ (𝜑 → ¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵})))) | 
| 158 |  | oveq2 7440 | . . . . . . . . . . . 12
⊢ (𝑘 = 𝑁 → (1...𝑘) = (1...𝑁)) | 
| 159 | 158 | oveq2d 7448 | . . . . . . . . . . 11
⊢ (𝑘 = 𝑁 → ((0..^𝐾) ↑m (1...𝑘)) = ((0..^𝐾) ↑m (1...𝑁))) | 
| 160 |  | eqidd 2737 | . . . . . . . . . . . . 13
⊢ (𝑘 = 𝑁 → 𝑓 = 𝑓) | 
| 161 | 160, 158,
158 | f1oeq123d 6841 | . . . . . . . . . . . 12
⊢ (𝑘 = 𝑁 → (𝑓:(1...𝑘)–1-1-onto→(1...𝑘) ↔ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁))) | 
| 162 | 161 | abbidv 2807 | . . . . . . . . . . 11
⊢ (𝑘 = 𝑁 → {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)} = {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) | 
| 163 | 159, 162 | xpeq12d 5715 | . . . . . . . . . 10
⊢ (𝑘 = 𝑁 → (((0..^𝐾) ↑m (1...𝑘)) × {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) = (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) | 
| 164 |  | oveq2 7440 | . . . . . . . . . . 11
⊢ (𝑘 = 𝑁 → (0...𝑘) = (0...𝑁)) | 
| 165 |  | oveq2 7440 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑁 → ((𝑗 + 1)...𝑘) = ((𝑗 + 1)...𝑁)) | 
| 166 | 165 | imaeq2d 6077 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑁 → ((2nd ‘𝑠) “ ((𝑗 + 1)...𝑘)) = ((2nd ‘𝑠) “ ((𝑗 + 1)...𝑁))) | 
| 167 | 166 | xpeq1d 5713 | . . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑁 → (((2nd ‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}) = (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})) | 
| 168 | 167 | uneq2d 4167 | . . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑁 → ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...𝑘)) × {0})) =
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) | 
| 169 | 168 | oveq2d 7448 | . . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑁 → ((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) = ((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))) | 
| 170 |  | oveq1 7439 | . . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑁 → (𝑘 + 1) = (𝑁 + 1)) | 
| 171 | 170 | oveq1d 7447 | . . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑁 → ((𝑘 + 1)...𝑁) = ((𝑁 + 1)...𝑁)) | 
| 172 | 171 | xpeq1d 5713 | . . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑁 → (((𝑘 + 1)...𝑁) × {0}) = (((𝑁 + 1)...𝑁) × {0})) | 
| 173 | 169, 172 | uneq12d 4168 | . . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑁 → (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) = (((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0}))) | 
| 174 | 173 | csbeq1d 3902 | . . . . . . . . . . . . 13
⊢ (𝑘 = 𝑁 → ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) / 𝑝⦌𝐵) | 
| 175 | 174 | eqeq2d 2747 | . . . . . . . . . . . 12
⊢ (𝑘 = 𝑁 → (𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ 𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) | 
| 176 | 164, 175 | rexeqbidv 3346 | . . . . . . . . . . 11
⊢ (𝑘 = 𝑁 → (∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ ∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) | 
| 177 | 164, 176 | raleqbidv 3345 | . . . . . . . . . 10
⊢ (𝑘 = 𝑁 → (∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) | 
| 178 | 163, 177 | rabeqbidv 3454 | . . . . . . . . 9
⊢ (𝑘 = 𝑁 → {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑘)) × {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) ∣ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵} = {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) | 
| 179 | 178 | fveq2d 6909 | . . . . . . . 8
⊢ (𝑘 = 𝑁 → (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑘)) × {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) ∣ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) = (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) / 𝑝⦌𝐵})) | 
| 180 | 179 | breq2d 5154 | . . . . . . 7
⊢ (𝑘 = 𝑁 → (2 ∥ (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑘)) × {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) ∣ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ↔ 2 ∥ (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}))) | 
| 181 | 180 | notbid 318 | . . . . . 6
⊢ (𝑘 = 𝑁 → (¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑘))
× {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) ∣ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ↔ ¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}))) | 
| 182 | 181 | imbi2d 340 | . . . . 5
⊢ (𝑘 = 𝑁 → ((𝜑 → ¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑘))
× {𝑓 ∣ 𝑓:(1...𝑘)–1-1-onto→(1...𝑘)}) ∣ ∀𝑖 ∈ (0...𝑘)∃𝑗 ∈ (0...𝑘)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑘)) × {0}))) ∪ (((𝑘 + 1)...𝑁) × {0})) / 𝑝⦌𝐵})) ↔ (𝜑 → ¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) / 𝑝⦌𝐵})))) | 
| 183 |  | n2dvds1 16406 | . . . . . . 7
⊢  ¬ 2
∥ 1 | 
| 184 |  | opex 5468 | . . . . . . . . . 10
⊢
〈∅, ∅〉 ∈ V | 
| 185 |  | hashsng 14409 | . . . . . . . . . 10
⊢
(〈∅, ∅〉 ∈ V →
(♯‘{〈∅, ∅〉}) = 1) | 
| 186 | 184, 185 | ax-mp 5 | . . . . . . . . 9
⊢
(♯‘{〈∅, ∅〉}) = 1 | 
| 187 |  | nnuz 12922 | . . . . . . . . . . . . . . . . 17
⊢ ℕ =
(ℤ≥‘1) | 
| 188 | 1, 187 | eleqtrdi 2850 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘1)) | 
| 189 |  | eluzfz1 13572 | . . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈
(ℤ≥‘1) → 1 ∈ (1...𝑁)) | 
| 190 | 188, 189 | syl 17 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → 1 ∈ (1...𝑁)) | 
| 191 |  | poimirlem28.5 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐾 ∈ ℕ) | 
| 192 | 191 | nnnn0d 12589 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐾 ∈
ℕ0) | 
| 193 |  | 0elfz 13665 | . . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ ℕ0
→ 0 ∈ (0...𝐾)) | 
| 194 |  | fconst6g 6796 | . . . . . . . . . . . . . . . 16
⊢ (0 ∈
(0...𝐾) → ((1...𝑁) × {0}):(1...𝑁)⟶(0...𝐾)) | 
| 195 | 192, 193,
194 | 3syl 18 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → ((1...𝑁) × {0}):(1...𝑁)⟶(0...𝐾)) | 
| 196 | 70 | fvconst2 7225 | . . . . . . . . . . . . . . . 16
⊢ (1 ∈
(1...𝑁) → (((1...𝑁) × {0})‘1) =
0) | 
| 197 | 190, 196 | syl 17 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → (((1...𝑁) × {0})‘1) =
0) | 
| 198 | 190, 195,
197 | 3jca 1128 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (1 ∈ (1...𝑁) ∧ ((1...𝑁) × {0}):(1...𝑁)⟶(0...𝐾) ∧ (((1...𝑁) × {0})‘1) =
0)) | 
| 199 |  | nfv 1913 | . . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑝(𝜑 ∧ (1 ∈ (1...𝑁) ∧ ((1...𝑁) × {0}):(1...𝑁)⟶(0...𝐾) ∧ (((1...𝑁) × {0})‘1) =
0)) | 
| 200 |  | nfcsb1v 3922 | . . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑝⦋((1...𝑁) × {0}) / 𝑝⦌𝐵 | 
| 201 | 200 | nfeq1 2920 | . . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑝⦋((1...𝑁) × {0}) / 𝑝⦌𝐵 = 0 | 
| 202 | 199, 201 | nfim 1895 | . . . . . . . . . . . . . . 15
⊢
Ⅎ𝑝((𝜑 ∧ (1 ∈ (1...𝑁) ∧ ((1...𝑁) × {0}):(1...𝑁)⟶(0...𝐾) ∧ (((1...𝑁) × {0})‘1) = 0)) →
⦋((1...𝑁)
× {0}) / 𝑝⦌𝐵 = 0) | 
| 203 |  | ovex 7465 | . . . . . . . . . . . . . . . 16
⊢
(1...𝑁) ∈
V | 
| 204 |  | snex 5435 | . . . . . . . . . . . . . . . 16
⊢ {0}
∈ V | 
| 205 | 203, 204 | xpex 7774 | . . . . . . . . . . . . . . 15
⊢
((1...𝑁) ×
{0}) ∈ V | 
| 206 |  | feq1 6715 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑝 = ((1...𝑁) × {0}) → (𝑝:(1...𝑁)⟶(0...𝐾) ↔ ((1...𝑁) × {0}):(1...𝑁)⟶(0...𝐾))) | 
| 207 |  | fveq1 6904 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑝 = ((1...𝑁) × {0}) → (𝑝‘1) = (((1...𝑁) × {0})‘1)) | 
| 208 | 207 | eqeq1d 2738 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑝 = ((1...𝑁) × {0}) → ((𝑝‘1) = 0 ↔ (((1...𝑁) × {0})‘1) =
0)) | 
| 209 | 206, 208 | 3anbi23d 1440 | . . . . . . . . . . . . . . . . 17
⊢ (𝑝 = ((1...𝑁) × {0}) → ((1 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘1) = 0) ↔ (1 ∈ (1...𝑁) ∧ ((1...𝑁) × {0}):(1...𝑁)⟶(0...𝐾) ∧ (((1...𝑁) × {0})‘1) =
0))) | 
| 210 | 209 | anbi2d 630 | . . . . . . . . . . . . . . . 16
⊢ (𝑝 = ((1...𝑁) × {0}) → ((𝜑 ∧ (1 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘1) = 0)) ↔ (𝜑 ∧ (1 ∈ (1...𝑁) ∧ ((1...𝑁) × {0}):(1...𝑁)⟶(0...𝐾) ∧ (((1...𝑁) × {0})‘1) =
0)))) | 
| 211 |  | csbeq1a 3912 | . . . . . . . . . . . . . . . . 17
⊢ (𝑝 = ((1...𝑁) × {0}) → 𝐵 = ⦋((1...𝑁) × {0}) / 𝑝⦌𝐵) | 
| 212 | 211 | eqeq1d 2738 | . . . . . . . . . . . . . . . 16
⊢ (𝑝 = ((1...𝑁) × {0}) → (𝐵 = 0 ↔ ⦋((1...𝑁) × {0}) / 𝑝⦌𝐵 = 0)) | 
| 213 | 210, 212 | imbi12d 344 | . . . . . . . . . . . . . . 15
⊢ (𝑝 = ((1...𝑁) × {0}) → (((𝜑 ∧ (1 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘1) = 0)) → 𝐵 = 0) ↔ ((𝜑 ∧ (1 ∈ (1...𝑁) ∧ ((1...𝑁) × {0}):(1...𝑁)⟶(0...𝐾) ∧ (((1...𝑁) × {0})‘1) = 0)) →
⦋((1...𝑁)
× {0}) / 𝑝⦌𝐵 = 0))) | 
| 214 |  | 1ex 11258 | . . . . . . . . . . . . . . . . 17
⊢ 1 ∈
V | 
| 215 |  | eleq1 2828 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 1 → (𝑛 ∈ (1...𝑁) ↔ 1 ∈ (1...𝑁))) | 
| 216 |  | fveqeq2 6914 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 1 → ((𝑝‘𝑛) = 0 ↔ (𝑝‘1) = 0)) | 
| 217 | 215, 216 | 3anbi13d 1439 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 1 → ((𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘𝑛) = 0) ↔ (1 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘1) = 0))) | 
| 218 | 217 | anbi2d 630 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 1 → ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘𝑛) = 0)) ↔ (𝜑 ∧ (1 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘1) = 0)))) | 
| 219 |  | breq2 5146 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 1 → (𝐵 < 𝑛 ↔ 𝐵 < 1)) | 
| 220 | 218, 219 | imbi12d 344 | . . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 1 → (((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘𝑛) = 0)) → 𝐵 < 𝑛) ↔ ((𝜑 ∧ (1 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘1) = 0)) → 𝐵 < 1))) | 
| 221 |  | poimirlem28.3 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘𝑛) = 0)) → 𝐵 < 𝑛) | 
| 222 | 214, 220,
221 | vtocl 3557 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (1 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘1) = 0)) → 𝐵 < 1) | 
| 223 |  | poimirlem28.2 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑝:(1...𝑁)⟶(0...𝐾)) → 𝐵 ∈ (0...𝑁)) | 
| 224 |  | elfznn0 13661 | . . . . . . . . . . . . . . . . . 18
⊢ (𝐵 ∈ (0...𝑁) → 𝐵 ∈
ℕ0) | 
| 225 |  | nn0lt10b 12682 | . . . . . . . . . . . . . . . . . 18
⊢ (𝐵 ∈ ℕ0
→ (𝐵 < 1 ↔
𝐵 = 0)) | 
| 226 | 223, 224,
225 | 3syl 18 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑝:(1...𝑁)⟶(0...𝐾)) → (𝐵 < 1 ↔ 𝐵 = 0)) | 
| 227 | 226 | 3ad2antr2 1189 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (1 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘1) = 0)) → (𝐵 < 1 ↔ 𝐵 = 0)) | 
| 228 | 222, 227 | mpbid 232 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (1 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘1) = 0)) → 𝐵 = 0) | 
| 229 | 202, 205,
213, 228 | vtoclf 3563 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (1 ∈ (1...𝑁) ∧ ((1...𝑁) × {0}):(1...𝑁)⟶(0...𝐾) ∧ (((1...𝑁) × {0})‘1) = 0)) →
⦋((1...𝑁)
× {0}) / 𝑝⦌𝐵 = 0) | 
| 230 | 198, 229 | mpdan 687 | . . . . . . . . . . . . 13
⊢ (𝜑 → ⦋((1...𝑁) × {0}) / 𝑝⦌𝐵 = 0) | 
| 231 | 230 | eqcomd 2742 | . . . . . . . . . . . 12
⊢ (𝜑 → 0 =
⦋((1...𝑁)
× {0}) / 𝑝⦌𝐵) | 
| 232 | 231 | ralrimivw 3149 | . . . . . . . . . . 11
⊢ (𝜑 → ∀𝑠 ∈ {〈∅, ∅〉}0 =
⦋((1...𝑁)
× {0}) / 𝑝⦌𝐵) | 
| 233 |  | rabid2 3469 | . . . . . . . . . . 11
⊢
({〈∅, ∅〉} = {𝑠 ∈ {〈∅, ∅〉}
∣ 0 = ⦋((1...𝑁) × {0}) / 𝑝⦌𝐵} ↔ ∀𝑠 ∈ {〈∅, ∅〉}0 =
⦋((1...𝑁)
× {0}) / 𝑝⦌𝐵) | 
| 234 | 232, 233 | sylibr 234 | . . . . . . . . . 10
⊢ (𝜑 → {〈∅,
∅〉} = {𝑠 ∈
{〈∅, ∅〉} ∣ 0 = ⦋((1...𝑁) × {0}) / 𝑝⦌𝐵}) | 
| 235 | 234 | fveq2d 6909 | . . . . . . . . 9
⊢ (𝜑 →
(♯‘{〈∅, ∅〉}) = (♯‘{𝑠 ∈ {〈∅,
∅〉} ∣ 0 = ⦋((1...𝑁) × {0}) / 𝑝⦌𝐵})) | 
| 236 | 186, 235 | eqtr3id 2790 | . . . . . . . 8
⊢ (𝜑 → 1 = (♯‘{𝑠 ∈ {〈∅,
∅〉} ∣ 0 = ⦋((1...𝑁) × {0}) / 𝑝⦌𝐵})) | 
| 237 | 236 | breq2d 5154 | . . . . . . 7
⊢ (𝜑 → (2 ∥ 1 ↔ 2
∥ (♯‘{𝑠
∈ {〈∅, ∅〉} ∣ 0 = ⦋((1...𝑁) × {0}) / 𝑝⦌𝐵}))) | 
| 238 | 183, 237 | mtbii 326 | . . . . . 6
⊢ (𝜑 → ¬ 2 ∥
(♯‘{𝑠 ∈
{〈∅, ∅〉} ∣ 0 = ⦋((1...𝑁) × {0}) / 𝑝⦌𝐵})) | 
| 239 | 238 | a1i 11 | . . . . 5
⊢ (𝑁 ∈ ℕ0
→ (𝜑 → ¬ 2
∥ (♯‘{𝑠
∈ {〈∅, ∅〉} ∣ 0 = ⦋((1...𝑁) × {0}) / 𝑝⦌𝐵}))) | 
| 240 |  | 2z 12651 | . . . . . . . . . . . . 13
⊢ 2 ∈
ℤ | 
| 241 |  | fzfi 14014 | . . . . . . . . . . . . . . . . 17
⊢
(1...(𝑚 + 1)) ∈
Fin | 
| 242 |  | mapfi 9389 | . . . . . . . . . . . . . . . . 17
⊢
(((0..^𝐾) ∈ Fin
∧ (1...(𝑚 + 1)) ∈
Fin) → ((0..^𝐾)
↑m (1...(𝑚
+ 1))) ∈ Fin) | 
| 243 | 10, 241, 242 | mp2an 692 | . . . . . . . . . . . . . . . 16
⊢
((0..^𝐾)
↑m (1...(𝑚
+ 1))) ∈ Fin | 
| 244 |  | ovex 7465 | . . . . . . . . . . . . . . . . . . 19
⊢
(1...(𝑚 + 1)) ∈
V | 
| 245 | 244, 244 | mapval 8879 | . . . . . . . . . . . . . . . . . 18
⊢
((1...(𝑚 + 1))
↑m (1...(𝑚
+ 1))) = {𝑓 ∣ 𝑓:(1...(𝑚 + 1))⟶(1...(𝑚 + 1))} | 
| 246 |  | mapfi 9389 | . . . . . . . . . . . . . . . . . . 19
⊢
(((1...(𝑚 + 1))
∈ Fin ∧ (1...(𝑚 +
1)) ∈ Fin) → ((1...(𝑚 + 1)) ↑m (1...(𝑚 + 1))) ∈
Fin) | 
| 247 | 241, 241,
246 | mp2an 692 | . . . . . . . . . . . . . . . . . 18
⊢
((1...(𝑚 + 1))
↑m (1...(𝑚
+ 1))) ∈ Fin | 
| 248 | 245, 247 | eqeltrri 2837 | . . . . . . . . . . . . . . . . 17
⊢ {𝑓 ∣ 𝑓:(1...(𝑚 + 1))⟶(1...(𝑚 + 1))} ∈ Fin | 
| 249 |  | f1of 6847 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1)) → 𝑓:(1...(𝑚 + 1))⟶(1...(𝑚 + 1))) | 
| 250 | 249 | ss2abi 4066 | . . . . . . . . . . . . . . . . 17
⊢ {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))} ⊆ {𝑓 ∣ 𝑓:(1...(𝑚 + 1))⟶(1...(𝑚 + 1))} | 
| 251 |  | ssfi 9214 | . . . . . . . . . . . . . . . . 17
⊢ (({𝑓 ∣ 𝑓:(1...(𝑚 + 1))⟶(1...(𝑚 + 1))} ∈ Fin ∧ {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))} ⊆ {𝑓 ∣ 𝑓:(1...(𝑚 + 1))⟶(1...(𝑚 + 1))}) → {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))} ∈ Fin) | 
| 252 | 248, 250,
251 | mp2an 692 | . . . . . . . . . . . . . . . 16
⊢ {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))} ∈ Fin | 
| 253 |  | xpfi 9359 | . . . . . . . . . . . . . . . 16
⊢
((((0..^𝐾)
↑m (1...(𝑚
+ 1))) ∈ Fin ∧ {𝑓
∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))} ∈ Fin) → (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∈ Fin) | 
| 254 | 243, 252,
253 | mp2an 692 | . . . . . . . . . . . . . . 15
⊢
(((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∈ Fin | 
| 255 |  | rabfi 9304 | . . . . . . . . . . . . . . 15
⊢
((((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∈ Fin → {𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵} ∈ Fin) | 
| 256 |  | hashcl 14396 | . . . . . . . . . . . . . . 15
⊢ ({𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵} ∈ Fin → (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ∈
ℕ0) | 
| 257 | 254, 255,
256 | mp2b 10 | . . . . . . . . . . . . . 14
⊢
(♯‘{𝑠
∈ (((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ∈
ℕ0 | 
| 258 | 257 | nn0zi 12644 | . . . . . . . . . . . . 13
⊢
(♯‘{𝑠
∈ (((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ∈ ℤ | 
| 259 |  | rabfi 9304 | . . . . . . . . . . . . . . 15
⊢
((((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∈ Fin → {𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))} ∈ Fin) | 
| 260 |  | hashcl 14396 | . . . . . . . . . . . . . . 15
⊢ ({𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))} ∈ Fin →
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}) ∈
ℕ0) | 
| 261 | 254, 259,
260 | mp2b 10 | . . . . . . . . . . . . . 14
⊢
(♯‘{𝑠
∈ (((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}) ∈
ℕ0 | 
| 262 | 261 | nn0zi 12644 | . . . . . . . . . . . . 13
⊢
(♯‘{𝑠
∈ (((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}) ∈ ℤ | 
| 263 | 240, 258,
262 | 3pm3.2i 1339 | . . . . . . . . . . . 12
⊢ (2 ∈
ℤ ∧ (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ∈ ℤ ∧
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}) ∈ ℤ) | 
| 264 |  | nn0p1nn 12567 | . . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ ℕ0
→ (𝑚 + 1) ∈
ℕ) | 
| 265 | 264 | ad2antrl 728 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → (𝑚 + 1) ∈ ℕ) | 
| 266 |  | uneq1 4160 | . . . . . . . . . . . . . . . 16
⊢ (𝑞 = ((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) → (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) = (((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))) | 
| 267 | 266 | csbeq1d 3902 | . . . . . . . . . . . . . . 15
⊢ (𝑞 = ((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) →
⦋(𝑞 ∪
((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵) | 
| 268 | 70 | fconst 6793 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑚 + 1) + 1)...𝑁) × {0}):(((𝑚 + 1) + 1)...𝑁)⟶{0} | 
| 269 | 268 | jctr 524 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑞:(1...(𝑚 + 1))⟶(0...𝐾) → (𝑞:(1...(𝑚 + 1))⟶(0...𝐾) ∧ ((((𝑚 + 1) + 1)...𝑁) × {0}):(((𝑚 + 1) + 1)...𝑁)⟶{0})) | 
| 270 | 264 | nnred 12282 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑚 ∈ ℕ0
→ (𝑚 + 1) ∈
ℝ) | 
| 271 | 270 | ltp1d 12199 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑚 ∈ ℕ0
→ (𝑚 + 1) < ((𝑚 + 1) + 1)) | 
| 272 |  | fzdisj 13592 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑚 + 1) < ((𝑚 + 1) + 1) → ((1...(𝑚 + 1)) ∩ (((𝑚 + 1) + 1)...𝑁)) = ∅) | 
| 273 | 271, 272 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑚 ∈ ℕ0
→ ((1...(𝑚 + 1)) ∩
(((𝑚 + 1) + 1)...𝑁)) = ∅) | 
| 274 |  | fun 6769 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑞:(1...(𝑚 + 1))⟶(0...𝐾) ∧ ((((𝑚 + 1) + 1)...𝑁) × {0}):(((𝑚 + 1) + 1)...𝑁)⟶{0}) ∧ ((1...(𝑚 + 1)) ∩ (((𝑚 + 1) + 1)...𝑁)) = ∅) → (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):((1...(𝑚 + 1)) ∪ (((𝑚 + 1) + 1)...𝑁))⟶((0...𝐾) ∪ {0})) | 
| 275 | 269, 273,
274 | syl2anr 597 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑚 ∈ ℕ0
∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) → (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):((1...(𝑚 + 1)) ∪ (((𝑚 + 1) + 1)...𝑁))⟶((0...𝐾) ∪ {0})) | 
| 276 | 275 | adantlr 715 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑚 ∈ ℕ0
∧ 𝑚 < 𝑁) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) → (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):((1...(𝑚 + 1)) ∪ (((𝑚 + 1) + 1)...𝑁))⟶((0...𝐾) ∪ {0})) | 
| 277 | 276 | adantl 481 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾))) → (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):((1...(𝑚 + 1)) ∪ (((𝑚 + 1) + 1)...𝑁))⟶((0...𝐾) ∪ {0})) | 
| 278 | 264 | peano2nnd 12284 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑚 ∈ ℕ0
→ ((𝑚 + 1) + 1) ∈
ℕ) | 
| 279 | 278, 187 | eleqtrdi 2850 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑚 ∈ ℕ0
→ ((𝑚 + 1) + 1) ∈
(ℤ≥‘1)) | 
| 280 | 279 | ad2antrl 728 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → ((𝑚 + 1) + 1) ∈
(ℤ≥‘1)) | 
| 281 |  | nn0z 12640 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑚 ∈ ℕ0
→ 𝑚 ∈
ℤ) | 
| 282 | 1 | nnzd 12642 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 𝑁 ∈ ℤ) | 
| 283 |  | zltp1le 12669 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑚 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑚 < 𝑁 ↔ (𝑚 + 1) ≤ 𝑁)) | 
| 284 | 281, 282,
283 | syl2anr 597 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (𝑚 < 𝑁 ↔ (𝑚 + 1) ≤ 𝑁)) | 
| 285 | 284 | biimpa 476 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 < 𝑁) → (𝑚 + 1) ≤ 𝑁) | 
| 286 | 285 | anasss 466 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → (𝑚 + 1) ≤ 𝑁) | 
| 287 | 281 | peano2zd 12727 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑚 ∈ ℕ0
→ (𝑚 + 1) ∈
ℤ) | 
| 288 | 287 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑚 ∈ ℕ0
∧ 𝑚 < 𝑁) → (𝑚 + 1) ∈ ℤ) | 
| 289 |  | eluz 12893 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑚 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈
(ℤ≥‘(𝑚 + 1)) ↔ (𝑚 + 1) ≤ 𝑁)) | 
| 290 | 288, 282,
289 | syl2anr 597 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → (𝑁 ∈ (ℤ≥‘(𝑚 + 1)) ↔ (𝑚 + 1) ≤ 𝑁)) | 
| 291 | 286, 290 | mpbird 257 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → 𝑁 ∈ (ℤ≥‘(𝑚 + 1))) | 
| 292 |  | fzsplit2 13590 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑚 + 1) + 1) ∈
(ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘(𝑚 + 1))) → (1...𝑁) = ((1...(𝑚 + 1)) ∪ (((𝑚 + 1) + 1)...𝑁))) | 
| 293 | 280, 291,
292 | syl2anc 584 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → (1...𝑁) = ((1...(𝑚 + 1)) ∪ (((𝑚 + 1) + 1)...𝑁))) | 
| 294 | 293 | eqcomd 2742 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → ((1...(𝑚 + 1)) ∪ (((𝑚 + 1) + 1)...𝑁)) = (1...𝑁)) | 
| 295 | 192, 193 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 0 ∈ (0...𝐾)) | 
| 296 | 295 | snssd 4808 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → {0} ⊆ (0...𝐾)) | 
| 297 |  | ssequn2 4188 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ({0}
⊆ (0...𝐾) ↔
((0...𝐾) ∪ {0}) =
(0...𝐾)) | 
| 298 | 296, 297 | sylib 218 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((0...𝐾) ∪ {0}) = (0...𝐾)) | 
| 299 | 298 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → ((0...𝐾) ∪ {0}) = (0...𝐾)) | 
| 300 | 294, 299 | feq23d 6730 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):((1...(𝑚 + 1)) ∪ (((𝑚 + 1) + 1)...𝑁))⟶((0...𝐾) ∪ {0}) ↔ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾))) | 
| 301 | 300 | adantrr 717 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾))) → ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):((1...(𝑚 + 1)) ∪ (((𝑚 + 1) + 1)...𝑁))⟶((0...𝐾) ∪ {0}) ↔ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾))) | 
| 302 | 277, 301 | mpbid 232 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾))) → (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾)) | 
| 303 |  | nfv 1913 | . . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑝(𝜑 ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾)) | 
| 304 |  | nfcsb1v 3922 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑝⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 | 
| 305 | 304 | nfel1 2921 | . . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑝⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∈ (0...𝑁) | 
| 306 | 303, 305 | nfim 1895 | . . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑝((𝜑 ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾)) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∈ (0...𝑁)) | 
| 307 |  | vex 3483 | . . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑞 ∈ V | 
| 308 |  | ovex 7465 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑚 + 1) + 1)...𝑁) ∈ V | 
| 309 | 308, 204 | xpex 7774 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑚 + 1) + 1)...𝑁) × {0}) ∈ V | 
| 310 | 307, 309 | unex 7765 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) ∈ V | 
| 311 |  | feq1 6715 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑝 = (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) → (𝑝:(1...𝑁)⟶(0...𝐾) ↔ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾))) | 
| 312 | 311 | anbi2d 630 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑝 = (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) → ((𝜑 ∧ 𝑝:(1...𝑁)⟶(0...𝐾)) ↔ (𝜑 ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾)))) | 
| 313 |  | csbeq1a 3912 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑝 = (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) → 𝐵 = ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵) | 
| 314 | 313 | eleq1d 2825 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑝 = (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) → (𝐵 ∈ (0...𝑁) ↔ ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∈ (0...𝑁))) | 
| 315 | 312, 314 | imbi12d 344 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑝 = (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) → (((𝜑 ∧ 𝑝:(1...𝑁)⟶(0...𝐾)) → 𝐵 ∈ (0...𝑁)) ↔ ((𝜑 ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾)) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∈ (0...𝑁)))) | 
| 316 | 306, 310,
315, 223 | vtoclf 3563 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾)) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∈ (0...𝑁)) | 
| 317 | 302, 316 | syldan 591 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾))) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∈ (0...𝑁)) | 
| 318 | 317 | anassrs 467 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∈ (0...𝑁)) | 
| 319 |  | elfznn0 13661 | . . . . . . . . . . . . . . . . 17
⊢
(⦋(𝑞
∪ ((((𝑚 + 1) +
1)...𝑁) × {0})) /
𝑝⦌𝐵 ∈ (0...𝑁) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∈
ℕ0) | 
| 320 | 318, 319 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∈
ℕ0) | 
| 321 | 264 | nnnn0d 12589 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈ ℕ0
→ (𝑚 + 1) ∈
ℕ0) | 
| 322 | 321 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑚 ∈ ℕ0
∧ 𝑚 < 𝑁) → (𝑚 + 1) ∈
ℕ0) | 
| 323 | 322 | ad2antlr 727 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) → (𝑚 + 1) ∈
ℕ0) | 
| 324 |  | leloe 11348 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑚 + 1) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑚 + 1) ≤ 𝑁 ↔ ((𝑚 + 1) < 𝑁 ∨ (𝑚 + 1) = 𝑁))) | 
| 325 | 270, 3, 324 | syl2anr 597 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → ((𝑚 + 1) ≤ 𝑁 ↔ ((𝑚 + 1) < 𝑁 ∨ (𝑚 + 1) = 𝑁))) | 
| 326 | 284, 325 | bitrd 279 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (𝑚 < 𝑁 ↔ ((𝑚 + 1) < 𝑁 ∨ (𝑚 + 1) = 𝑁))) | 
| 327 | 326 | biimpd 229 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (𝑚 < 𝑁 → ((𝑚 + 1) < 𝑁 ∨ (𝑚 + 1) = 𝑁))) | 
| 328 | 327 | imdistani 568 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 < 𝑁) → ((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 + 1) < 𝑁 ∨ (𝑚 + 1) = 𝑁))) | 
| 329 | 328 | anasss 466 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → ((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 + 1) < 𝑁 ∨ (𝑚 + 1) = 𝑁))) | 
| 330 |  | simplll 774 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ (𝑚 + 1) < 𝑁) → 𝜑) | 
| 331 | 278 | nnge1d 12315 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑚 ∈ ℕ0
→ 1 ≤ ((𝑚 + 1) +
1)) | 
| 332 | 331 | ad2antlr 727 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑚 + 1) < 𝑁) → 1 ≤ ((𝑚 + 1) + 1)) | 
| 333 |  | zltp1le 12669 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑚 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑚 + 1) < 𝑁 ↔ ((𝑚 + 1) + 1) ≤ 𝑁)) | 
| 334 | 287, 282,
333 | syl2anr 597 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → ((𝑚 + 1) < 𝑁 ↔ ((𝑚 + 1) + 1) ≤ 𝑁)) | 
| 335 | 334 | biimpa 476 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑚 + 1) < 𝑁) → ((𝑚 + 1) + 1) ≤ 𝑁) | 
| 336 | 287 | peano2zd 12727 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑚 ∈ ℕ0
→ ((𝑚 + 1) + 1) ∈
ℤ) | 
| 337 |  | 1z 12649 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 1 ∈
ℤ | 
| 338 |  | elfz 13554 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝑚 + 1) + 1) ∈ ℤ ∧
1 ∈ ℤ ∧ 𝑁
∈ ℤ) → (((𝑚
+ 1) + 1) ∈ (1...𝑁)
↔ (1 ≤ ((𝑚 + 1) +
1) ∧ ((𝑚 + 1) + 1) ≤
𝑁))) | 
| 339 | 337, 338 | mp3an2 1450 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝑚 + 1) + 1) ∈ ℤ ∧
𝑁 ∈ ℤ) →
(((𝑚 + 1) + 1) ∈
(1...𝑁) ↔ (1 ≤
((𝑚 + 1) + 1) ∧ ((𝑚 + 1) + 1) ≤ 𝑁))) | 
| 340 | 336, 282,
339 | syl2anr 597 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (((𝑚 + 1) + 1) ∈ (1...𝑁) ↔ (1 ≤ ((𝑚 + 1) + 1) ∧ ((𝑚 + 1) + 1) ≤ 𝑁))) | 
| 341 | 340 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑚 + 1) < 𝑁) → (((𝑚 + 1) + 1) ∈ (1...𝑁) ↔ (1 ≤ ((𝑚 + 1) + 1) ∧ ((𝑚 + 1) + 1) ≤ 𝑁))) | 
| 342 | 332, 335,
341 | mpbir2and 713 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑚 + 1) < 𝑁) → ((𝑚 + 1) + 1) ∈ (1...𝑁)) | 
| 343 | 342 | adantlr 715 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ (𝑚 + 1) < 𝑁) → ((𝑚 + 1) + 1) ∈ (1...𝑁)) | 
| 344 |  | nn0re 12537 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑚 ∈ ℕ0
→ 𝑚 ∈
ℝ) | 
| 345 | 344 | ad2antlr 727 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑚 + 1) < 𝑁) → 𝑚 ∈ ℝ) | 
| 346 | 270 | ad2antlr 727 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑚 + 1) < 𝑁) → (𝑚 + 1) ∈ ℝ) | 
| 347 | 3 | ad2antrr 726 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑚 + 1) < 𝑁) → 𝑁 ∈ ℝ) | 
| 348 | 344 | ltp1d 12199 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑚 ∈ ℕ0
→ 𝑚 < (𝑚 + 1)) | 
| 349 | 348 | ad2antlr 727 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑚 + 1) < 𝑁) → 𝑚 < (𝑚 + 1)) | 
| 350 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑚 + 1) < 𝑁) → (𝑚 + 1) < 𝑁) | 
| 351 | 345, 346,
347, 349, 350 | lttrd 11423 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑚 + 1) < 𝑁) → 𝑚 < 𝑁) | 
| 352 | 351 | adantlr 715 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ (𝑚 + 1) < 𝑁) → 𝑚 < 𝑁) | 
| 353 |  | anass 468 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 < 𝑁) ↔ (𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁))) | 
| 354 | 302 | anassrs 467 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) → (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾)) | 
| 355 | 353, 354 | sylanb 581 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 < 𝑁) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) → (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾)) | 
| 356 | 355 | an32s 652 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ 𝑚 < 𝑁) → (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾)) | 
| 357 | 352, 356 | syldan 591 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ (𝑚 + 1) < 𝑁) → (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾)) | 
| 358 |  | ffn 6735 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑞:(1...(𝑚 + 1))⟶(0...𝐾) → 𝑞 Fn (1...(𝑚 + 1))) | 
| 359 | 358 | ad2antlr 727 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ (𝑚 + 1) < 𝑁) → 𝑞 Fn (1...(𝑚 + 1))) | 
| 360 | 273 | ad3antlr 731 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ (𝑚 + 1) < 𝑁) → ((1...(𝑚 + 1)) ∩ (((𝑚 + 1) + 1)...𝑁)) = ∅) | 
| 361 |  | eluz 12893 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑚 + 1) + 1) ∈ ℤ ∧
𝑁 ∈ ℤ) →
(𝑁 ∈
(ℤ≥‘((𝑚 + 1) + 1)) ↔ ((𝑚 + 1) + 1) ≤ 𝑁)) | 
| 362 | 336, 282,
361 | syl2anr 597 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (𝑁 ∈
(ℤ≥‘((𝑚 + 1) + 1)) ↔ ((𝑚 + 1) + 1) ≤ 𝑁)) | 
| 363 | 362 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑚 + 1) < 𝑁) → (𝑁 ∈
(ℤ≥‘((𝑚 + 1) + 1)) ↔ ((𝑚 + 1) + 1) ≤ 𝑁)) | 
| 364 | 335, 363 | mpbird 257 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑚 + 1) < 𝑁) → 𝑁 ∈
(ℤ≥‘((𝑚 + 1) + 1))) | 
| 365 |  | eluzfz1 13572 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑁 ∈
(ℤ≥‘((𝑚 + 1) + 1)) → ((𝑚 + 1) + 1) ∈ (((𝑚 + 1) + 1)...𝑁)) | 
| 366 | 364, 365 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑚 + 1) < 𝑁) → ((𝑚 + 1) + 1) ∈ (((𝑚 + 1) + 1)...𝑁)) | 
| 367 | 366 | adantlr 715 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ (𝑚 + 1) < 𝑁) → ((𝑚 + 1) + 1) ∈ (((𝑚 + 1) + 1)...𝑁)) | 
| 368 |  | fnconstg 6795 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (0 ∈
V → ((((𝑚 + 1) +
1)...𝑁) × {0}) Fn
(((𝑚 + 1) + 1)...𝑁)) | 
| 369 | 70, 368 | ax-mp 5 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑚 + 1) + 1)...𝑁) × {0}) Fn (((𝑚 + 1) + 1)...𝑁) | 
| 370 |  | fvun2 7000 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑞 Fn (1...(𝑚 + 1)) ∧ ((((𝑚 + 1) + 1)...𝑁) × {0}) Fn (((𝑚 + 1) + 1)...𝑁) ∧ (((1...(𝑚 + 1)) ∩ (((𝑚 + 1) + 1)...𝑁)) = ∅ ∧ ((𝑚 + 1) + 1) ∈ (((𝑚 + 1) + 1)...𝑁))) → ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘((𝑚 + 1) + 1)) = (((((𝑚 + 1) + 1)...𝑁) × {0})‘((𝑚 + 1) + 1))) | 
| 371 | 369, 370 | mp3an2 1450 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑞 Fn (1...(𝑚 + 1)) ∧ (((1...(𝑚 + 1)) ∩ (((𝑚 + 1) + 1)...𝑁)) = ∅ ∧ ((𝑚 + 1) + 1) ∈ (((𝑚 + 1) + 1)...𝑁))) → ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘((𝑚 + 1) + 1)) = (((((𝑚 + 1) + 1)...𝑁) × {0})‘((𝑚 + 1) + 1))) | 
| 372 | 359, 360,
367, 371 | syl12anc 836 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ (𝑚 + 1) < 𝑁) → ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘((𝑚 + 1) + 1)) = (((((𝑚 + 1) + 1)...𝑁) × {0})‘((𝑚 + 1) + 1))) | 
| 373 | 70 | fvconst2 7225 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑚 + 1) + 1) ∈ (((𝑚 + 1) + 1)...𝑁) → (((((𝑚 + 1) + 1)...𝑁) × {0})‘((𝑚 + 1) + 1)) = 0) | 
| 374 | 367, 373 | syl 17 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ (𝑚 + 1) < 𝑁) → (((((𝑚 + 1) + 1)...𝑁) × {0})‘((𝑚 + 1) + 1)) = 0) | 
| 375 | 372, 374 | eqtrd 2776 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ (𝑚 + 1) < 𝑁) → ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘((𝑚 + 1) + 1)) = 0) | 
| 376 |  | nfv 1913 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑝(𝜑 ∧ (((𝑚 + 1) + 1) ∈ (1...𝑁) ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾) ∧ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘((𝑚 + 1) + 1)) = 0)) | 
| 377 |  | nfcv 2904 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑝
< | 
| 378 |  | nfcv 2904 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑝((𝑚 + 1) + 1) | 
| 379 | 304, 377,
378 | nfbr 5189 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑝⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 < ((𝑚 + 1) + 1) | 
| 380 | 376, 379 | nfim 1895 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑝((𝜑 ∧ (((𝑚 + 1) + 1) ∈ (1...𝑁) ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾) ∧ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘((𝑚 + 1) + 1)) = 0)) →
⦋(𝑞 ∪
((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 < ((𝑚 + 1) + 1)) | 
| 381 |  | fveq1 6904 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑝 = (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) → (𝑝‘((𝑚 + 1) + 1)) = ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘((𝑚 + 1) + 1))) | 
| 382 | 381 | eqeq1d 2738 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑝 = (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) → ((𝑝‘((𝑚 + 1) + 1)) = 0 ↔ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘((𝑚 + 1) + 1)) = 0)) | 
| 383 | 311, 382 | 3anbi23d 1440 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑝 = (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) → ((((𝑚 + 1) + 1) ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘((𝑚 + 1) + 1)) = 0) ↔ (((𝑚 + 1) + 1) ∈ (1...𝑁) ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾) ∧ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘((𝑚 + 1) + 1)) = 0))) | 
| 384 | 383 | anbi2d 630 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑝 = (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) → ((𝜑 ∧ (((𝑚 + 1) + 1) ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘((𝑚 + 1) + 1)) = 0)) ↔ (𝜑 ∧ (((𝑚 + 1) + 1) ∈ (1...𝑁) ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾) ∧ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘((𝑚 + 1) + 1)) = 0)))) | 
| 385 | 313 | breq1d 5152 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑝 = (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) → (𝐵 < ((𝑚 + 1) + 1) ↔ ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 < ((𝑚 + 1) + 1))) | 
| 386 | 384, 385 | imbi12d 344 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑝 = (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) → (((𝜑 ∧ (((𝑚 + 1) + 1) ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘((𝑚 + 1) + 1)) = 0)) → 𝐵 < ((𝑚 + 1) + 1)) ↔ ((𝜑 ∧ (((𝑚 + 1) + 1) ∈ (1...𝑁) ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾) ∧ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘((𝑚 + 1) + 1)) = 0)) →
⦋(𝑞 ∪
((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 < ((𝑚 + 1) + 1)))) | 
| 387 |  | ovex 7465 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑚 + 1) + 1) ∈
V | 
| 388 |  | eleq1 2828 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑛 = ((𝑚 + 1) + 1) → (𝑛 ∈ (1...𝑁) ↔ ((𝑚 + 1) + 1) ∈ (1...𝑁))) | 
| 389 |  | fveqeq2 6914 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑛 = ((𝑚 + 1) + 1) → ((𝑝‘𝑛) = 0 ↔ (𝑝‘((𝑚 + 1) + 1)) = 0)) | 
| 390 | 388, 389 | 3anbi13d 1439 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 = ((𝑚 + 1) + 1) → ((𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘𝑛) = 0) ↔ (((𝑚 + 1) + 1) ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘((𝑚 + 1) + 1)) = 0))) | 
| 391 | 390 | anbi2d 630 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 = ((𝑚 + 1) + 1) → ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘𝑛) = 0)) ↔ (𝜑 ∧ (((𝑚 + 1) + 1) ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘((𝑚 + 1) + 1)) = 0)))) | 
| 392 |  | breq2 5146 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 = ((𝑚 + 1) + 1) → (𝐵 < 𝑛 ↔ 𝐵 < ((𝑚 + 1) + 1))) | 
| 393 | 391, 392 | imbi12d 344 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = ((𝑚 + 1) + 1) → (((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘𝑛) = 0)) → 𝐵 < 𝑛) ↔ ((𝜑 ∧ (((𝑚 + 1) + 1) ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘((𝑚 + 1) + 1)) = 0)) → 𝐵 < ((𝑚 + 1) + 1)))) | 
| 394 | 387, 393,
221 | vtocl 3557 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (((𝑚 + 1) + 1) ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘((𝑚 + 1) + 1)) = 0)) → 𝐵 < ((𝑚 + 1) + 1)) | 
| 395 | 380, 310,
386, 394 | vtoclf 3563 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (((𝑚 + 1) + 1) ∈ (1...𝑁) ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾) ∧ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘((𝑚 + 1) + 1)) = 0)) →
⦋(𝑞 ∪
((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 < ((𝑚 + 1) + 1)) | 
| 396 | 330, 343,
357, 375, 395 | syl13anc 1373 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ (𝑚 + 1) < 𝑁) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 < ((𝑚 + 1) + 1)) | 
| 397 | 353, 318 | sylanb 581 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 < 𝑁) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∈ (0...𝑁)) | 
| 398 | 397 | an32s 652 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ 𝑚 < 𝑁) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∈ (0...𝑁)) | 
| 399 | 398 | elfzelzd 13566 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ 𝑚 < 𝑁) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∈ ℤ) | 
| 400 | 352, 399 | syldan 591 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ (𝑚 + 1) < 𝑁) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∈ ℤ) | 
| 401 | 287 | ad3antlr 731 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ (𝑚 + 1) < 𝑁) → (𝑚 + 1) ∈ ℤ) | 
| 402 |  | zleltp1 12670 | . . . . . . . . . . . . . . . . . . . . 21
⊢
((⦋(𝑞
∪ ((((𝑚 + 1) +
1)...𝑁) × {0})) /
𝑝⦌𝐵 ∈ ℤ ∧ (𝑚 + 1) ∈ ℤ) →
(⦋(𝑞 ∪
((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ≤ (𝑚 + 1) ↔ ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 < ((𝑚 + 1) + 1))) | 
| 403 | 400, 401,
402 | syl2anc 584 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ (𝑚 + 1) < 𝑁) → (⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ≤ (𝑚 + 1) ↔ ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 < ((𝑚 + 1) + 1))) | 
| 404 | 396, 403 | mpbird 257 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ (𝑚 + 1) < 𝑁) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ≤ (𝑚 + 1)) | 
| 405 | 348 | ad2antlr 727 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) → 𝑚 < (𝑚 + 1)) | 
| 406 |  | breq2 5146 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑚 + 1) = 𝑁 → (𝑚 < (𝑚 + 1) ↔ 𝑚 < 𝑁)) | 
| 407 | 406 | biimpac 478 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑚 < (𝑚 + 1) ∧ (𝑚 + 1) = 𝑁) → 𝑚 < 𝑁) | 
| 408 | 405, 407 | sylan 580 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ (𝑚 + 1) = 𝑁) → 𝑚 < 𝑁) | 
| 409 |  | elfzle2 13569 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(⦋(𝑞
∪ ((((𝑚 + 1) +
1)...𝑁) × {0})) /
𝑝⦌𝐵 ∈ (0...𝑁) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ≤ 𝑁) | 
| 410 | 398, 409 | syl 17 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ 𝑚 < 𝑁) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ≤ 𝑁) | 
| 411 | 408, 410 | syldan 591 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ (𝑚 + 1) = 𝑁) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ≤ 𝑁) | 
| 412 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ (𝑚 + 1) = 𝑁) → (𝑚 + 1) = 𝑁) | 
| 413 | 411, 412 | breqtrrd 5170 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ (𝑚 + 1) = 𝑁) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ≤ (𝑚 + 1)) | 
| 414 | 404, 413 | jaodan 959 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) ∧ ((𝑚 + 1) < 𝑁 ∨ (𝑚 + 1) = 𝑁)) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ≤ (𝑚 + 1)) | 
| 415 | 414 | an32s 652 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ((𝑚 + 1) < 𝑁 ∨ (𝑚 + 1) = 𝑁)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ≤ (𝑚 + 1)) | 
| 416 | 329, 415 | sylan 580 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ≤ (𝑚 + 1)) | 
| 417 |  | elfz2nn0 13659 | . . . . . . . . . . . . . . . 16
⊢
(⦋(𝑞
∪ ((((𝑚 + 1) +
1)...𝑁) × {0})) /
𝑝⦌𝐵 ∈ (0...(𝑚 + 1)) ↔ (⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∈ ℕ0 ∧ (𝑚 + 1) ∈ ℕ0
∧ ⦋(𝑞
∪ ((((𝑚 + 1) +
1)...𝑁) × {0})) /
𝑝⦌𝐵 ≤ (𝑚 + 1))) | 
| 418 | 320, 323,
416, 417 | syl3anbrc 1343 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∈ (0...(𝑚 + 1))) | 
| 419 |  | fzss2 13605 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈
(ℤ≥‘(𝑚 + 1)) → (1...(𝑚 + 1)) ⊆ (1...𝑁)) | 
| 420 | 291, 419 | syl 17 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → (1...(𝑚 + 1)) ⊆ (1...𝑁)) | 
| 421 | 420 | sselda 3982 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) ∧ 𝑛 ∈ (1...(𝑚 + 1))) → 𝑛 ∈ (1...𝑁)) | 
| 422 | 421 | 3ad2antr1 1188 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) ∧ (𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾) ∧ (𝑞‘𝑛) = 0)) → 𝑛 ∈ (1...𝑁)) | 
| 423 | 354 | 3ad2antr2 1189 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) ∧ (𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾) ∧ (𝑞‘𝑛) = 0)) → (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾)) | 
| 424 | 358 | ad2antll 729 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾))) → 𝑞 Fn (1...(𝑚 + 1))) | 
| 425 | 273 | ad2antlr 727 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾))) → ((1...(𝑚 + 1)) ∩ (((𝑚 + 1) + 1)...𝑁)) = ∅) | 
| 426 |  | simprl 770 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾))) → 𝑛 ∈ (1...(𝑚 + 1))) | 
| 427 |  | fvun1 6999 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑞 Fn (1...(𝑚 + 1)) ∧ ((((𝑚 + 1) + 1)...𝑁) × {0}) Fn (((𝑚 + 1) + 1)...𝑁) ∧ (((1...(𝑚 + 1)) ∩ (((𝑚 + 1) + 1)...𝑁)) = ∅ ∧ 𝑛 ∈ (1...(𝑚 + 1)))) → ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = (𝑞‘𝑛)) | 
| 428 | 369, 427 | mp3an2 1450 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑞 Fn (1...(𝑚 + 1)) ∧ (((1...(𝑚 + 1)) ∩ (((𝑚 + 1) + 1)...𝑁)) = ∅ ∧ 𝑛 ∈ (1...(𝑚 + 1)))) → ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = (𝑞‘𝑛)) | 
| 429 | 424, 425,
426, 428 | syl12anc 836 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾))) → ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = (𝑞‘𝑛)) | 
| 430 | 429 | adantlrr 721 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) ∧ (𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾))) → ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = (𝑞‘𝑛)) | 
| 431 | 430 | 3adantr3 1171 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) ∧ (𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾) ∧ (𝑞‘𝑛) = 0)) → ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = (𝑞‘𝑛)) | 
| 432 |  | simpr3 1196 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) ∧ (𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾) ∧ (𝑞‘𝑛) = 0)) → (𝑞‘𝑛) = 0) | 
| 433 | 431, 432 | eqtrd 2776 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) ∧ (𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾) ∧ (𝑞‘𝑛) = 0)) → ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = 0) | 
| 434 | 422, 423,
433 | 3jca 1128 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) ∧ (𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾) ∧ (𝑞‘𝑛) = 0)) → (𝑛 ∈ (1...𝑁) ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾) ∧ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = 0)) | 
| 435 |  | nfv 1913 | . . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑝(𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾) ∧ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = 0)) | 
| 436 |  | nfcv 2904 | . . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑝𝑛 | 
| 437 | 304, 377,
436 | nfbr 5189 | . . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑝⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 < 𝑛 | 
| 438 | 435, 437 | nfim 1895 | . . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑝((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾) ∧ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = 0)) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 < 𝑛) | 
| 439 |  | fveq1 6904 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑝 = (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) → (𝑝‘𝑛) = ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛)) | 
| 440 | 439 | eqeq1d 2738 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑝 = (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) → ((𝑝‘𝑛) = 0 ↔ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = 0)) | 
| 441 | 311, 440 | 3anbi23d 1440 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑝 = (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) → ((𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘𝑛) = 0) ↔ (𝑛 ∈ (1...𝑁) ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾) ∧ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = 0))) | 
| 442 | 441 | anbi2d 630 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑝 = (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) → ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘𝑛) = 0)) ↔ (𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾) ∧ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = 0)))) | 
| 443 | 313 | breq1d 5152 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑝 = (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) → (𝐵 < 𝑛 ↔ ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 < 𝑛)) | 
| 444 | 442, 443 | imbi12d 344 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑝 = (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) → (((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘𝑛) = 0)) → 𝐵 < 𝑛) ↔ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾) ∧ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = 0)) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 < 𝑛))) | 
| 445 | 438, 310,
444, 221 | vtoclf 3563 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾) ∧ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = 0)) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 < 𝑛) | 
| 446 | 445 | adantlr 715 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) ∧ (𝑛 ∈ (1...𝑁) ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾) ∧ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = 0)) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 < 𝑛) | 
| 447 | 434, 446 | syldan 591 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) ∧ (𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾) ∧ (𝑞‘𝑛) = 0)) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 < 𝑛) | 
| 448 |  | simp1 1136 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾) ∧ (𝑞‘𝑛) = 𝐾) → 𝑛 ∈ (1...(𝑚 + 1))) | 
| 449 | 421 | anasss 466 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁) ∧ 𝑛 ∈ (1...(𝑚 + 1)))) → 𝑛 ∈ (1...𝑁)) | 
| 450 | 448, 449 | sylanr2 683 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁) ∧ (𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾) ∧ (𝑞‘𝑛) = 𝐾))) → 𝑛 ∈ (1...𝑁)) | 
| 451 |  | simp2 1137 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾) ∧ (𝑞‘𝑛) = 𝐾) → 𝑞:(1...(𝑚 + 1))⟶(0...𝐾)) | 
| 452 | 451, 302 | sylanr2 683 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁) ∧ (𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾) ∧ (𝑞‘𝑛) = 𝐾))) → (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾)) | 
| 453 | 429 | 3adantr3 1171 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾) ∧ (𝑞‘𝑛) = 𝐾)) → ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = (𝑞‘𝑛)) | 
| 454 |  | simpr3 1196 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾) ∧ (𝑞‘𝑛) = 𝐾)) → (𝑞‘𝑛) = 𝐾) | 
| 455 | 453, 454 | eqtrd 2776 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾) ∧ (𝑞‘𝑛) = 𝐾)) → ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = 𝐾) | 
| 456 | 455 | anasss 466 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ (𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾) ∧ (𝑞‘𝑛) = 𝐾))) → ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = 𝐾) | 
| 457 | 456 | adantrlr 723 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁) ∧ (𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾) ∧ (𝑞‘𝑛) = 𝐾))) → ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = 𝐾) | 
| 458 | 450, 452,
457 | 3jca 1128 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁) ∧ (𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾) ∧ (𝑞‘𝑛) = 𝐾))) → (𝑛 ∈ (1...𝑁) ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾) ∧ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = 𝐾)) | 
| 459 |  | nfv 1913 | . . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑝(𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾) ∧ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = 𝐾)) | 
| 460 |  | nfcv 2904 | . . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑝(𝑛 − 1) | 
| 461 | 304, 460 | nfne 3042 | . . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑝⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ≠ (𝑛 − 1) | 
| 462 | 459, 461 | nfim 1895 | . . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑝((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾) ∧ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = 𝐾)) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ≠ (𝑛 − 1)) | 
| 463 | 439 | eqeq1d 2738 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑝 = (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) → ((𝑝‘𝑛) = 𝐾 ↔ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = 𝐾)) | 
| 464 | 311, 463 | 3anbi23d 1440 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑝 = (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) → ((𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘𝑛) = 𝐾) ↔ (𝑛 ∈ (1...𝑁) ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾) ∧ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = 𝐾))) | 
| 465 | 464 | anbi2d 630 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑝 = (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) → ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘𝑛) = 𝐾)) ↔ (𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾) ∧ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = 𝐾)))) | 
| 466 | 313 | neeq1d 2999 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑝 = (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) → (𝐵 ≠ (𝑛 − 1) ↔ ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ≠ (𝑛 − 1))) | 
| 467 | 465, 466 | imbi12d 344 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑝 = (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) → (((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘𝑛) = 𝐾)) → 𝐵 ≠ (𝑛 − 1)) ↔ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾) ∧ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = 𝐾)) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ≠ (𝑛 − 1)))) | 
| 468 |  | poimirlem28.4 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑝:(1...𝑁)⟶(0...𝐾) ∧ (𝑝‘𝑛) = 𝐾)) → 𝐵 ≠ (𝑛 − 1)) | 
| 469 | 462, 310,
467, 468 | vtoclf 3563 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ (𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})):(1...𝑁)⟶(0...𝐾) ∧ ((𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0}))‘𝑛) = 𝐾)) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ≠ (𝑛 − 1)) | 
| 470 | 458, 469 | syldan 591 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁) ∧ (𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾) ∧ (𝑞‘𝑛) = 𝐾))) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ≠ (𝑛 − 1)) | 
| 471 | 470 | anassrs 467 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) ∧ (𝑛 ∈ (1...(𝑚 + 1)) ∧ 𝑞:(1...(𝑚 + 1))⟶(0...𝐾) ∧ (𝑞‘𝑛) = 𝐾)) → ⦋(𝑞 ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ≠ (𝑛 − 1)) | 
| 472 | 265, 267,
418, 447, 471 | poimirlem27 37655 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → 2 ∥ ((♯‘{𝑡 ∈ ((((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd ‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}))) | 
| 473 | 265, 267,
418 | poimirlem26 37654 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → 2 ∥ ((♯‘{𝑡 ∈ ((((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}))) | 
| 474 |  | fzfi 14014 | . . . . . . . . . . . . . . . . . . 19
⊢
(0...(𝑚 + 1)) ∈
Fin | 
| 475 |  | xpfi 9359 | . . . . . . . . . . . . . . . . . . 19
⊢
(((((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∈ Fin ∧ (0...(𝑚 + 1)) ∈ Fin) →
((((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∈ Fin) | 
| 476 | 254, 474,
475 | mp2an 692 | . . . . . . . . . . . . . . . . . 18
⊢
((((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∈ Fin | 
| 477 |  | rabfi 9304 | . . . . . . . . . . . . . . . . . 18
⊢
(((((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∈ Fin → {𝑡 ∈ ((((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵} ∈ Fin) | 
| 478 |  | hashcl 14396 | . . . . . . . . . . . . . . . . . 18
⊢ ({𝑡 ∈ ((((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵} ∈ Fin → (♯‘{𝑡 ∈ ((((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st ‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ∈
ℕ0) | 
| 479 | 476, 477,
478 | mp2b 10 | . . . . . . . . . . . . . . . . 17
⊢
(♯‘{𝑡
∈ ((((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ∈ ℕ0 | 
| 480 | 479 | nn0zi 12644 | . . . . . . . . . . . . . . . 16
⊢
(♯‘{𝑡
∈ ((((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ∈ ℤ | 
| 481 |  | zsubcl 12661 | . . . . . . . . . . . . . . . 16
⊢
(((♯‘{𝑡
∈ ((((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ∈ ℤ ∧ (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd ‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}) ∈ ℤ) →
((♯‘{𝑡 ∈
((((0..^𝐾) ↑m
(1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st ‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd ‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))})) ∈ ℤ) | 
| 482 | 480, 262,
481 | mp2an 692 | . . . . . . . . . . . . . . 15
⊢
((♯‘{𝑡
∈ ((((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd ‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))})) ∈ ℤ | 
| 483 |  | zsubcl 12661 | . . . . . . . . . . . . . . . 16
⊢
(((♯‘{𝑡
∈ ((((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ∈ ℤ ∧ (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ∈ ℤ) →
((♯‘{𝑡 ∈
((((0..^𝐾) ↑m
(1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st ‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵})) ∈ ℤ) | 
| 484 | 480, 258,
483 | mp2an 692 | . . . . . . . . . . . . . . 15
⊢
((♯‘{𝑡
∈ ((((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵})) ∈ ℤ | 
| 485 |  | dvds2sub 16329 | . . . . . . . . . . . . . . 15
⊢ ((2
∈ ℤ ∧ ((♯‘{𝑡 ∈ ((((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd ‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))})) ∈ ℤ ∧
((♯‘{𝑡 ∈
((((0..^𝐾) ↑m
(1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st ‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵})) ∈ ℤ) → ((2 ∥
((♯‘{𝑡 ∈
((((0..^𝐾) ↑m
(1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st ‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd ‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))})) ∧ 2 ∥
((♯‘{𝑡 ∈
((((0..^𝐾) ↑m
(1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st ‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}))) → 2 ∥ (((♯‘{𝑡 ∈ ((((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st ‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd ‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))})) − ((♯‘{𝑡 ∈ ((((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st ‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}))))) | 
| 486 | 240, 482,
484, 485 | mp3an 1462 | . . . . . . . . . . . . . 14
⊢ ((2
∥ ((♯‘{𝑡
∈ ((((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd ‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))})) ∧ 2 ∥
((♯‘{𝑡 ∈
((((0..^𝐾) ↑m
(1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st ‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}))) → 2 ∥ (((♯‘{𝑡 ∈ ((((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st ‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd ‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))})) − ((♯‘{𝑡 ∈ ((((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st ‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵})))) | 
| 487 | 472, 473,
486 | syl2anc 584 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → 2 ∥ (((♯‘{𝑡 ∈ ((((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd ‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))})) − ((♯‘{𝑡 ∈ ((((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st ‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵})))) | 
| 488 | 479 | nn0cni 12540 | . . . . . . . . . . . . . 14
⊢
(♯‘{𝑡
∈ ((((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ∈ ℂ | 
| 489 | 261 | nn0cni 12540 | . . . . . . . . . . . . . 14
⊢
(♯‘{𝑠
∈ (((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}) ∈ ℂ | 
| 490 | 257 | nn0cni 12540 | . . . . . . . . . . . . . 14
⊢
(♯‘{𝑠
∈ (((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ∈ ℂ | 
| 491 |  | nnncan1 11546 | . . . . . . . . . . . . . 14
⊢
(((♯‘{𝑡
∈ ((((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ∈ ℂ ∧ (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd ‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}) ∈ ℂ ∧
(♯‘{𝑠 ∈
(((0..^𝐾) ↑m
(1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ∈ ℂ) →
(((♯‘{𝑡 ∈
((((0..^𝐾) ↑m
(1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st ‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd ‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))})) − ((♯‘{𝑡 ∈ ((((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st ‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}))) = ((♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd ‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}))) | 
| 492 | 488, 489,
490, 491 | mp3an 1462 | . . . . . . . . . . . . 13
⊢
(((♯‘{𝑡
∈ ((((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st
‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd ‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))})) − ((♯‘{𝑡 ∈ ((((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) × (0...(𝑚 + 1))) ∣ ∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ ((0...(𝑚 + 1)) ∖ {(2nd ‘𝑡)})𝑖 = ⦋(1st ‘𝑡) / 𝑠⦌⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}))) = ((♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠) ∘f
+ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd ‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))})) | 
| 493 | 487, 492 | breqtrdi 5183 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → 2 ∥ ((♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}))) | 
| 494 |  | dvdssub2 16339 | . . . . . . . . . . . 12
⊢ (((2
∈ ℤ ∧ (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ∈ ℤ ∧
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}) ∈ ℤ) ∧ 2 ∥
((♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) − (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}))) → (2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ↔ 2 ∥ (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}))) | 
| 495 | 263, 493,
494 | sylancr 587 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → (2 ∥ (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ↔ 2 ∥ (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}))) | 
| 496 |  | nn0cn 12538 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 ∈ ℕ0
→ 𝑚 ∈
ℂ) | 
| 497 |  | pncan1 11688 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 ∈ ℂ → ((𝑚 + 1) − 1) = 𝑚) | 
| 498 | 496, 497 | syl 17 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 ∈ ℕ0
→ ((𝑚 + 1) − 1)
= 𝑚) | 
| 499 | 498 | oveq2d 7448 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈ ℕ0
→ (0...((𝑚 + 1)
− 1)) = (0...𝑚)) | 
| 500 | 499 | rexeqdv 3326 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈ ℕ0
→ (∃𝑗 ∈
(0...((𝑚 + 1) −
1))𝑖 =
⦋(((1st ‘𝑠) ∘f + ((((2nd
‘𝑠) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪
((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ ∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) | 
| 501 | 499, 500 | raleqbidv 3345 | . . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ ℕ0
→ (∀𝑖 ∈
(0...((𝑚 + 1) −
1))∃𝑗 ∈
(0...((𝑚 + 1) −
1))𝑖 =
⦋(((1st ‘𝑠) ∘f + ((((2nd
‘𝑠) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪
((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) | 
| 502 | 501 | 3anbi1d 1441 | . . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ ℕ0
→ ((∀𝑖 ∈
(0...((𝑚 + 1) −
1))∃𝑗 ∈
(0...((𝑚 + 1) −
1))𝑖 =
⦋(((1st ‘𝑠) ∘f + ((((2nd
‘𝑠) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪
((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1)) ↔ (∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1)))) | 
| 503 | 502 | rabbidv 3443 | . . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ ℕ0
→ {𝑠 ∈
(((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))} = {𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}) | 
| 504 | 503 | fveq2d 6909 | . . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ℕ0
→ (♯‘{𝑠
∈ (((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}) = (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))})) | 
| 505 | 504 | ad2antrl 728 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}) = (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))})) | 
| 506 | 1 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → 𝑁 ∈ ℕ) | 
| 507 | 191 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → 𝐾 ∈ ℕ) | 
| 508 |  | simprl 770 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → 𝑚 ∈ ℕ0) | 
| 509 |  | simprr 772 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → 𝑚 < 𝑁) | 
| 510 | 506, 507,
508, 509 | poimirlem4 37632 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑚)) × {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∣ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵} ≈ {𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}) | 
| 511 |  | fzfi 14014 | . . . . . . . . . . . . . . . . . 18
⊢
(1...𝑚) ∈
Fin | 
| 512 |  | mapfi 9389 | . . . . . . . . . . . . . . . . . 18
⊢
(((0..^𝐾) ∈ Fin
∧ (1...𝑚) ∈ Fin)
→ ((0..^𝐾)
↑m (1...𝑚))
∈ Fin) | 
| 513 | 10, 511, 512 | mp2an 692 | . . . . . . . . . . . . . . . . 17
⊢
((0..^𝐾)
↑m (1...𝑚))
∈ Fin | 
| 514 |  | ovex 7465 | . . . . . . . . . . . . . . . . . . . 20
⊢
(1...𝑚) ∈
V | 
| 515 | 514, 514 | mapval 8879 | . . . . . . . . . . . . . . . . . . 19
⊢
((1...𝑚)
↑m (1...𝑚))
= {𝑓 ∣ 𝑓:(1...𝑚)⟶(1...𝑚)} | 
| 516 |  | mapfi 9389 | . . . . . . . . . . . . . . . . . . . 20
⊢
(((1...𝑚) ∈ Fin
∧ (1...𝑚) ∈ Fin)
→ ((1...𝑚)
↑m (1...𝑚))
∈ Fin) | 
| 517 | 511, 511,
516 | mp2an 692 | . . . . . . . . . . . . . . . . . . 19
⊢
((1...𝑚)
↑m (1...𝑚))
∈ Fin | 
| 518 | 515, 517 | eqeltrri 2837 | . . . . . . . . . . . . . . . . . 18
⊢ {𝑓 ∣ 𝑓:(1...𝑚)⟶(1...𝑚)} ∈ Fin | 
| 519 |  | f1of 6847 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑓:(1...𝑚)–1-1-onto→(1...𝑚) → 𝑓:(1...𝑚)⟶(1...𝑚)) | 
| 520 | 519 | ss2abi 4066 | . . . . . . . . . . . . . . . . . 18
⊢ {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)} ⊆ {𝑓 ∣ 𝑓:(1...𝑚)⟶(1...𝑚)} | 
| 521 |  | ssfi 9214 | . . . . . . . . . . . . . . . . . 18
⊢ (({𝑓 ∣ 𝑓:(1...𝑚)⟶(1...𝑚)} ∈ Fin ∧ {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)} ⊆ {𝑓 ∣ 𝑓:(1...𝑚)⟶(1...𝑚)}) → {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)} ∈ Fin) | 
| 522 | 518, 520,
521 | mp2an 692 | . . . . . . . . . . . . . . . . 17
⊢ {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)} ∈ Fin | 
| 523 |  | xpfi 9359 | . . . . . . . . . . . . . . . . 17
⊢
((((0..^𝐾)
↑m (1...𝑚))
∈ Fin ∧ {𝑓 ∣
𝑓:(1...𝑚)–1-1-onto→(1...𝑚)} ∈ Fin) → (((0..^𝐾) ↑m (1...𝑚)) × {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∈ Fin) | 
| 524 | 513, 522,
523 | mp2an 692 | . . . . . . . . . . . . . . . 16
⊢
(((0..^𝐾)
↑m (1...𝑚))
× {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∈ Fin | 
| 525 |  | rabfi 9304 | . . . . . . . . . . . . . . . 16
⊢
((((0..^𝐾)
↑m (1...𝑚))
× {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∈ Fin → {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑚)) × {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∣ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵} ∈ Fin) | 
| 526 | 524, 525 | ax-mp 5 | . . . . . . . . . . . . . . 15
⊢ {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑚)) × {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∣ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵} ∈ Fin | 
| 527 |  | rabfi 9304 | . . . . . . . . . . . . . . . 16
⊢
((((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∈ Fin → {𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))} ∈ Fin) | 
| 528 | 254, 527 | ax-mp 5 | . . . . . . . . . . . . . . 15
⊢ {𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))} ∈ Fin | 
| 529 |  | hashen 14387 | . . . . . . . . . . . . . . 15
⊢ (({𝑠 ∈ (((0..^𝐾) ↑m (1...𝑚)) × {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∣ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵} ∈ Fin ∧ {𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))} ∈ Fin) →
((♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑚))
× {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∣ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) = (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}) ↔ {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑚)) × {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∣ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵} ≈ {𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))})) | 
| 530 | 526, 528,
529 | mp2an 692 | . . . . . . . . . . . . . 14
⊢
((♯‘{𝑠
∈ (((0..^𝐾)
↑m (1...𝑚))
× {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∣ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) = (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}) ↔ {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑚)) × {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∣ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵} ≈ {𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}) | 
| 531 | 510, 530 | sylibr 234 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑚)) × {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∣ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) = (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))})) | 
| 532 | 505, 531 | eqtr4d 2779 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}) = (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑚)) × {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∣ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵})) | 
| 533 | 532 | breq2d 5154 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → (2 ∥ (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ (∀𝑖 ∈ (0...((𝑚 + 1) − 1))∃𝑗 ∈ (0...((𝑚 + 1) − 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑚 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑚 + 1)) = (𝑚 + 1))}) ↔ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑚))
× {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∣ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}))) | 
| 534 | 495, 533 | bitrd 279 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → (2 ∥ (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ↔ 2 ∥ (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑚)) × {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∣ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}))) | 
| 535 | 534 | biimpd 229 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → (2 ∥ (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑚 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) → 2 ∥ (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑚)) × {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∣ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}))) | 
| 536 | 535 | con3d 152 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ0 ∧ 𝑚 < 𝑁)) → (¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑚))
× {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∣ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) → ¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵}))) | 
| 537 | 536 | expcom 413 | . . . . . . 7
⊢ ((𝑚 ∈ ℕ0
∧ 𝑚 < 𝑁) → (𝜑 → (¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑚))
× {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∣ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) → ¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵})))) | 
| 538 | 537 | a2d 29 | . . . . . 6
⊢ ((𝑚 ∈ ℕ0
∧ 𝑚 < 𝑁) → ((𝜑 → ¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑚))
× {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∣ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵})) → (𝜑 → ¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵})))) | 
| 539 | 538 | 3adant1 1130 | . . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑚 ∈
ℕ0 ∧ 𝑚
< 𝑁) → ((𝜑 → ¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑚))
× {𝑓 ∣ 𝑓:(1...𝑚)–1-1-onto→(1...𝑚)}) ∣ ∀𝑖 ∈ (0...𝑚)∃𝑗 ∈ (0...𝑚)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑚)) × {0}))) ∪ (((𝑚 + 1)...𝑁) × {0})) / 𝑝⦌𝐵})) → (𝜑 → ¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...(𝑚
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑚 + 1))–1-1-onto→(1...(𝑚 + 1))}) ∣ ∀𝑖 ∈ (0...(𝑚 + 1))∃𝑗 ∈ (0...(𝑚 + 1))𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑚 + 1))) × {0}))) ∪ ((((𝑚 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵})))) | 
| 540 | 107, 132,
157, 182, 239, 539 | fnn0ind 12719 | . . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑁
≤ 𝑁) → (𝜑 → ¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}))) | 
| 541 | 5, 540 | mpcom 38 | . . 3
⊢ (𝜑 → ¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) / 𝑝⦌𝐵})) | 
| 542 |  | dvds0 16310 | . . . . . . . 8
⊢ (2 ∈
ℤ → 2 ∥ 0) | 
| 543 | 240, 542 | ax-mp 5 | . . . . . . 7
⊢ 2 ∥
0 | 
| 544 |  | hash0 14407 | . . . . . . 7
⊢
(♯‘∅) = 0 | 
| 545 | 543, 544 | breqtrri 5169 | . . . . . 6
⊢ 2 ∥
(♯‘∅) | 
| 546 |  | fveq2 6905 | . . . . . 6
⊢ ({𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶} = ∅ → (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶}) =
(♯‘∅)) | 
| 547 | 545, 546 | breqtrrid 5180 | . . . . 5
⊢ ({𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶} = ∅ → 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶})) | 
| 548 | 3 | ltp1d 12199 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑁 < (𝑁 + 1)) | 
| 549 | 282 | peano2zd 12727 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑁 + 1) ∈ ℤ) | 
| 550 |  | fzn 13581 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < (𝑁 + 1) ↔ ((𝑁 + 1)...𝑁) = ∅)) | 
| 551 | 549, 282,
550 | syl2anc 584 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑁 < (𝑁 + 1) ↔ ((𝑁 + 1)...𝑁) = ∅)) | 
| 552 | 548, 551 | mpbid 232 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑁 + 1)...𝑁) = ∅) | 
| 553 | 552 | xpeq1d 5713 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → (((𝑁 + 1)...𝑁) × {0}) = (∅ ×
{0})) | 
| 554 | 553, 86 | eqtrdi 2792 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → (((𝑁 + 1)...𝑁) × {0}) = ∅) | 
| 555 | 554 | uneq2d 4167 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) = (((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪
∅)) | 
| 556 |  | un0 4393 | . . . . . . . . . . . . . 14
⊢
(((1st ‘𝑠) ∘f + ((((2nd
‘𝑠) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...𝑁)) × {0}))) ∪ ∅)
= ((1st ‘𝑠) ∘f + ((((2nd
‘𝑠) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...𝑁)) ×
{0}))) | 
| 557 | 555, 556 | eqtrdi 2792 | . . . . . . . . . . . . 13
⊢ (𝜑 → (((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) = ((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})))) | 
| 558 | 557 | csbeq1d 3902 | . . . . . . . . . . . 12
⊢ (𝜑 →
⦋(((1st ‘𝑠) ∘f + ((((2nd
‘𝑠) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 = ⦋((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) / 𝑝⦌𝐵) | 
| 559 |  | ovex 7465 | . . . . . . . . . . . . 13
⊢
((1st ‘𝑠) ∘f + ((((2nd
‘𝑠) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...𝑁)) × {0}))) ∈
V | 
| 560 |  | poimirlem28.1 | . . . . . . . . . . . . 13
⊢ (𝑝 = ((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → 𝐵 = 𝐶) | 
| 561 | 559, 560 | csbie 3933 | . . . . . . . . . . . 12
⊢
⦋((1st ‘𝑠) ∘f + ((((2nd
‘𝑠) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...𝑁)) × {0}))) / 𝑝⦌𝐵 = 𝐶 | 
| 562 | 558, 561 | eqtrdi 2792 | . . . . . . . . . . 11
⊢ (𝜑 →
⦋(((1st ‘𝑠) ∘f + ((((2nd
‘𝑠) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 = 𝐶) | 
| 563 | 562 | eqeq2d 2747 | . . . . . . . . . 10
⊢ (𝜑 → (𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ 𝑖 = 𝐶)) | 
| 564 | 563 | rexbidv 3178 | . . . . . . . . 9
⊢ (𝜑 → (∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ ∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶)) | 
| 565 | 564 | ralbidv 3177 | . . . . . . . 8
⊢ (𝜑 → (∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶)) | 
| 566 | 565 | rabbidv 3443 | . . . . . . 7
⊢ (𝜑 → {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) / 𝑝⦌𝐵} = {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶}) | 
| 567 | 566 | fveq2d 6909 | . . . . . 6
⊢ (𝜑 → (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) = (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶})) | 
| 568 | 567 | breq2d 5154 | . . . . 5
⊢ (𝜑 → (2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) ↔ 2 ∥ (♯‘{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶}))) | 
| 569 | 547, 568 | imbitrrid 246 | . . . 4
⊢ (𝜑 → ({𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶} = ∅ → 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}))) | 
| 570 | 569 | necon3bd 2953 | . . 3
⊢ (𝜑 → (¬ 2 ∥
(♯‘{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) ∪ (((𝑁 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) → {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶} ≠ ∅)) | 
| 571 | 541, 570 | mpd 15 | . 2
⊢ (𝜑 → {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶} ≠ ∅) | 
| 572 |  | rabn0 4388 | . 2
⊢ ({𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∣ ∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶} ≠ ∅ ↔ ∃𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶) | 
| 573 | 571, 572 | sylib 218 | 1
⊢ (𝜑 → ∃𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})∀𝑖 ∈ (0...𝑁)∃𝑗 ∈ (0...𝑁)𝑖 = 𝐶) |