Step | Hyp | Ref
| Expression |
1 | | elmapi 8637 |
. . . . 5
⊢ (𝐴 ∈ (𝑅 ↑m 𝑉) → 𝐴:𝑉⟶𝑅) |
2 | | fdm 6609 |
. . . . . 6
⊢ (𝐴:𝑉⟶𝑅 → dom 𝐴 = 𝑉) |
3 | 2 | eqcomd 2744 |
. . . . 5
⊢ (𝐴:𝑉⟶𝑅 → 𝑉 = dom 𝐴) |
4 | 1, 3 | syl 17 |
. . . 4
⊢ (𝐴 ∈ (𝑅 ↑m 𝑉) → 𝑉 = dom 𝐴) |
5 | 4 | 3ad2ant3 1134 |
. . 3
⊢ (((𝑀 ∈ Domn ∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → 𝑉 = dom 𝐴) |
6 | | oveq2 7283 |
. . . . . . 7
⊢ ((𝐴‘𝑤) = (0g‘𝑀) → (𝐶(.r‘𝑀)(𝐴‘𝑤)) = (𝐶(.r‘𝑀)(0g‘𝑀))) |
7 | | domnring 20567 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ Domn → 𝑀 ∈ Ring) |
8 | 7 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ Domn ∧ 𝑉 ∈ 𝑋) → 𝑀 ∈ Ring) |
9 | | simpl 483 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) → 𝐶 ∈ 𝑅) |
10 | 8, 9 | anim12i 613 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ Domn ∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀))) → (𝑀 ∈ Ring ∧ 𝐶 ∈ 𝑅)) |
11 | 10 | 3adant3 1131 |
. . . . . . . . 9
⊢ (((𝑀 ∈ Domn ∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → (𝑀 ∈ Ring ∧ 𝐶 ∈ 𝑅)) |
12 | | rmsuppss.r |
. . . . . . . . . 10
⊢ 𝑅 = (Base‘𝑀) |
13 | | eqid 2738 |
. . . . . . . . . 10
⊢
(.r‘𝑀) = (.r‘𝑀) |
14 | | eqid 2738 |
. . . . . . . . . 10
⊢
(0g‘𝑀) = (0g‘𝑀) |
15 | 12, 13, 14 | ringrz 19827 |
. . . . . . . . 9
⊢ ((𝑀 ∈ Ring ∧ 𝐶 ∈ 𝑅) → (𝐶(.r‘𝑀)(0g‘𝑀)) = (0g‘𝑀)) |
16 | 11, 15 | syl 17 |
. . . . . . . 8
⊢ (((𝑀 ∈ Domn ∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → (𝐶(.r‘𝑀)(0g‘𝑀)) = (0g‘𝑀)) |
17 | 16 | adantr 481 |
. . . . . . 7
⊢ ((((𝑀 ∈ Domn ∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → (𝐶(.r‘𝑀)(0g‘𝑀)) = (0g‘𝑀)) |
18 | 6, 17 | sylan9eqr 2800 |
. . . . . 6
⊢
(((((𝑀 ∈ Domn
∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) ∧ (𝐴‘𝑤) = (0g‘𝑀)) → (𝐶(.r‘𝑀)(𝐴‘𝑤)) = (0g‘𝑀)) |
19 | 18 | ex 413 |
. . . . 5
⊢ ((((𝑀 ∈ Domn ∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → ((𝐴‘𝑤) = (0g‘𝑀) → (𝐶(.r‘𝑀)(𝐴‘𝑤)) = (0g‘𝑀))) |
20 | 19 | necon3d 2964 |
. . . 4
⊢ ((((𝑀 ∈ Domn ∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → ((𝐶(.r‘𝑀)(𝐴‘𝑤)) ≠ (0g‘𝑀) → (𝐴‘𝑤) ≠ (0g‘𝑀))) |
21 | | simpl1l 1223 |
. . . . . . 7
⊢ ((((𝑀 ∈ Domn ∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → 𝑀 ∈ Domn) |
22 | 21 | adantr 481 |
. . . . . 6
⊢
(((((𝑀 ∈ Domn
∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) ∧ (𝐴‘𝑤) ≠ (0g‘𝑀)) → 𝑀 ∈ Domn) |
23 | | simpll2 1212 |
. . . . . 6
⊢
(((((𝑀 ∈ Domn
∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) ∧ (𝐴‘𝑤) ≠ (0g‘𝑀)) → (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀))) |
24 | | ffvelrn 6959 |
. . . . . . . . . . 11
⊢ ((𝐴:𝑉⟶𝑅 ∧ 𝑤 ∈ 𝑉) → (𝐴‘𝑤) ∈ 𝑅) |
25 | 24 | ex 413 |
. . . . . . . . . 10
⊢ (𝐴:𝑉⟶𝑅 → (𝑤 ∈ 𝑉 → (𝐴‘𝑤) ∈ 𝑅)) |
26 | 1, 25 | syl 17 |
. . . . . . . . 9
⊢ (𝐴 ∈ (𝑅 ↑m 𝑉) → (𝑤 ∈ 𝑉 → (𝐴‘𝑤) ∈ 𝑅)) |
27 | 26 | 3ad2ant3 1134 |
. . . . . . . 8
⊢ (((𝑀 ∈ Domn ∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → (𝑤 ∈ 𝑉 → (𝐴‘𝑤) ∈ 𝑅)) |
28 | 27 | imp 407 |
. . . . . . 7
⊢ ((((𝑀 ∈ Domn ∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → (𝐴‘𝑤) ∈ 𝑅) |
29 | 28 | adantr 481 |
. . . . . 6
⊢
(((((𝑀 ∈ Domn
∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) ∧ (𝐴‘𝑤) ≠ (0g‘𝑀)) → (𝐴‘𝑤) ∈ 𝑅) |
30 | | simpr 485 |
. . . . . 6
⊢
(((((𝑀 ∈ Domn
∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) ∧ (𝐴‘𝑤) ≠ (0g‘𝑀)) → (𝐴‘𝑤) ≠ (0g‘𝑀)) |
31 | 12, 13, 14 | domnmuln0 20569 |
. . . . . 6
⊢ ((𝑀 ∈ Domn ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ ((𝐴‘𝑤) ∈ 𝑅 ∧ (𝐴‘𝑤) ≠ (0g‘𝑀))) → (𝐶(.r‘𝑀)(𝐴‘𝑤)) ≠ (0g‘𝑀)) |
32 | 22, 23, 29, 30, 31 | syl112anc 1373 |
. . . . 5
⊢
(((((𝑀 ∈ Domn
∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) ∧ (𝐴‘𝑤) ≠ (0g‘𝑀)) → (𝐶(.r‘𝑀)(𝐴‘𝑤)) ≠ (0g‘𝑀)) |
33 | 32 | ex 413 |
. . . 4
⊢ ((((𝑀 ∈ Domn ∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → ((𝐴‘𝑤) ≠ (0g‘𝑀) → (𝐶(.r‘𝑀)(𝐴‘𝑤)) ≠ (0g‘𝑀))) |
34 | 20, 33 | impbid 211 |
. . 3
⊢ ((((𝑀 ∈ Domn ∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → ((𝐶(.r‘𝑀)(𝐴‘𝑤)) ≠ (0g‘𝑀) ↔ (𝐴‘𝑤) ≠ (0g‘𝑀))) |
35 | 5, 34 | rabeqbidva 3421 |
. 2
⊢ (((𝑀 ∈ Domn ∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → {𝑤 ∈ 𝑉 ∣ (𝐶(.r‘𝑀)(𝐴‘𝑤)) ≠ (0g‘𝑀)} = {𝑤 ∈ dom 𝐴 ∣ (𝐴‘𝑤) ≠ (0g‘𝑀)}) |
36 | | fveq2 6774 |
. . . . 5
⊢ (𝑣 = 𝑤 → (𝐴‘𝑣) = (𝐴‘𝑤)) |
37 | 36 | oveq2d 7291 |
. . . 4
⊢ (𝑣 = 𝑤 → (𝐶(.r‘𝑀)(𝐴‘𝑣)) = (𝐶(.r‘𝑀)(𝐴‘𝑤))) |
38 | 37 | cbvmptv 5187 |
. . 3
⊢ (𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) = (𝑤 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑤))) |
39 | | simp1r 1197 |
. . 3
⊢ (((𝑀 ∈ Domn ∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → 𝑉 ∈ 𝑋) |
40 | | fvexd 6789 |
. . 3
⊢ (((𝑀 ∈ Domn ∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → (0g‘𝑀) ∈ V) |
41 | | ovexd 7310 |
. . 3
⊢ ((((𝑀 ∈ Domn ∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → (𝐶(.r‘𝑀)(𝐴‘𝑤)) ∈ V) |
42 | 38, 39, 40, 41 | mptsuppd 8003 |
. 2
⊢ (((𝑀 ∈ Domn ∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → ((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) supp (0g‘𝑀)) = {𝑤 ∈ 𝑉 ∣ (𝐶(.r‘𝑀)(𝐴‘𝑤)) ≠ (0g‘𝑀)}) |
43 | | elmapfun 8654 |
. . . 4
⊢ (𝐴 ∈ (𝑅 ↑m 𝑉) → Fun 𝐴) |
44 | 43 | 3ad2ant3 1134 |
. . 3
⊢ (((𝑀 ∈ Domn ∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → Fun 𝐴) |
45 | | simp3 1137 |
. . 3
⊢ (((𝑀 ∈ Domn ∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → 𝐴 ∈ (𝑅 ↑m 𝑉)) |
46 | | suppval1 7983 |
. . 3
⊢ ((Fun
𝐴 ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ (0g‘𝑀) ∈ V) → (𝐴 supp (0g‘𝑀)) = {𝑤 ∈ dom 𝐴 ∣ (𝐴‘𝑤) ≠ (0g‘𝑀)}) |
47 | 44, 45, 40, 46 | syl3anc 1370 |
. 2
⊢ (((𝑀 ∈ Domn ∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → (𝐴 supp (0g‘𝑀)) = {𝑤 ∈ dom 𝐴 ∣ (𝐴‘𝑤) ≠ (0g‘𝑀)}) |
48 | 35, 42, 47 | 3eqtr4d 2788 |
1
⊢ (((𝑀 ∈ Domn ∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → ((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) supp (0g‘𝑀)) = (𝐴 supp (0g‘𝑀))) |