Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  domnmsuppn0 Structured version   Visualization version   GIF version

Theorem domnmsuppn0 44771
Description: The support of a mapping of a multiplication of a nonzero constant with a function into a (ring theoretic) domain equals the support of the function. (Contributed by AV, 11-Apr-2019.)
Hypothesis
Ref Expression
rmsuppss.r 𝑅 = (Base‘𝑀)
Assertion
Ref Expression
domnmsuppn0 (((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) = (𝐴 supp (0g𝑀)))
Distinct variable groups:   𝑣,𝐴   𝑣,𝐶   𝑣,𝑀   𝑣,𝑅   𝑣,𝑋   𝑣,𝑉

Proof of Theorem domnmsuppn0
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elmapi 8411 . . . . 5 (𝐴 ∈ (𝑅m 𝑉) → 𝐴:𝑉𝑅)
2 fdm 6495 . . . . . 6 (𝐴:𝑉𝑅 → dom 𝐴 = 𝑉)
32eqcomd 2804 . . . . 5 (𝐴:𝑉𝑅𝑉 = dom 𝐴)
41, 3syl 17 . . . 4 (𝐴 ∈ (𝑅m 𝑉) → 𝑉 = dom 𝐴)
543ad2ant3 1132 . . 3 (((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → 𝑉 = dom 𝐴)
6 oveq2 7143 . . . . . . 7 ((𝐴𝑤) = (0g𝑀) → (𝐶(.r𝑀)(𝐴𝑤)) = (𝐶(.r𝑀)(0g𝑀)))
7 domnring 20062 . . . . . . . . . . . 12 (𝑀 ∈ Domn → 𝑀 ∈ Ring)
87adantr 484 . . . . . . . . . . 11 ((𝑀 ∈ Domn ∧ 𝑉𝑋) → 𝑀 ∈ Ring)
9 simpl 486 . . . . . . . . . . 11 ((𝐶𝑅𝐶 ≠ (0g𝑀)) → 𝐶𝑅)
108, 9anim12i 615 . . . . . . . . . 10 (((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀))) → (𝑀 ∈ Ring ∧ 𝐶𝑅))
11103adant3 1129 . . . . . . . . 9 (((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → (𝑀 ∈ Ring ∧ 𝐶𝑅))
12 rmsuppss.r . . . . . . . . . 10 𝑅 = (Base‘𝑀)
13 eqid 2798 . . . . . . . . . 10 (.r𝑀) = (.r𝑀)
14 eqid 2798 . . . . . . . . . 10 (0g𝑀) = (0g𝑀)
1512, 13, 14ringrz 19334 . . . . . . . . 9 ((𝑀 ∈ Ring ∧ 𝐶𝑅) → (𝐶(.r𝑀)(0g𝑀)) = (0g𝑀))
1611, 15syl 17 . . . . . . . 8 (((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → (𝐶(.r𝑀)(0g𝑀)) = (0g𝑀))
1716adantr 484 . . . . . . 7 ((((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → (𝐶(.r𝑀)(0g𝑀)) = (0g𝑀))
186, 17sylan9eqr 2855 . . . . . 6 (((((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) ∧ (𝐴𝑤) = (0g𝑀)) → (𝐶(.r𝑀)(𝐴𝑤)) = (0g𝑀))
1918ex 416 . . . . 5 ((((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → ((𝐴𝑤) = (0g𝑀) → (𝐶(.r𝑀)(𝐴𝑤)) = (0g𝑀)))
2019necon3d 3008 . . . 4 ((((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → ((𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀) → (𝐴𝑤) ≠ (0g𝑀)))
21 simpl1l 1221 . . . . . . 7 ((((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → 𝑀 ∈ Domn)
2221adantr 484 . . . . . 6 (((((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) ∧ (𝐴𝑤) ≠ (0g𝑀)) → 𝑀 ∈ Domn)
23 simpll2 1210 . . . . . 6 (((((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) ∧ (𝐴𝑤) ≠ (0g𝑀)) → (𝐶𝑅𝐶 ≠ (0g𝑀)))
24 ffvelrn 6826 . . . . . . . . . . 11 ((𝐴:𝑉𝑅𝑤𝑉) → (𝐴𝑤) ∈ 𝑅)
2524ex 416 . . . . . . . . . 10 (𝐴:𝑉𝑅 → (𝑤𝑉 → (𝐴𝑤) ∈ 𝑅))
261, 25syl 17 . . . . . . . . 9 (𝐴 ∈ (𝑅m 𝑉) → (𝑤𝑉 → (𝐴𝑤) ∈ 𝑅))
27263ad2ant3 1132 . . . . . . . 8 (((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → (𝑤𝑉 → (𝐴𝑤) ∈ 𝑅))
2827imp 410 . . . . . . 7 ((((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → (𝐴𝑤) ∈ 𝑅)
2928adantr 484 . . . . . 6 (((((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) ∧ (𝐴𝑤) ≠ (0g𝑀)) → (𝐴𝑤) ∈ 𝑅)
30 simpr 488 . . . . . 6 (((((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) ∧ (𝐴𝑤) ≠ (0g𝑀)) → (𝐴𝑤) ≠ (0g𝑀))
3112, 13, 14domnmuln0 20064 . . . . . 6 ((𝑀 ∈ Domn ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ ((𝐴𝑤) ∈ 𝑅 ∧ (𝐴𝑤) ≠ (0g𝑀))) → (𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀))
3222, 23, 29, 30, 31syl112anc 1371 . . . . 5 (((((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) ∧ (𝐴𝑤) ≠ (0g𝑀)) → (𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀))
3332ex 416 . . . 4 ((((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → ((𝐴𝑤) ≠ (0g𝑀) → (𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀)))
3420, 33impbid 215 . . 3 ((((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → ((𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀) ↔ (𝐴𝑤) ≠ (0g𝑀)))
355, 34rabeqbidva 3434 . 2 (((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → {𝑤𝑉 ∣ (𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀)} = {𝑤 ∈ dom 𝐴 ∣ (𝐴𝑤) ≠ (0g𝑀)})
36 fveq2 6645 . . . . 5 (𝑣 = 𝑤 → (𝐴𝑣) = (𝐴𝑤))
3736oveq2d 7151 . . . 4 (𝑣 = 𝑤 → (𝐶(.r𝑀)(𝐴𝑣)) = (𝐶(.r𝑀)(𝐴𝑤)))
3837cbvmptv 5133 . . 3 (𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) = (𝑤𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑤)))
39 simp1r 1195 . . 3 (((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → 𝑉𝑋)
40 fvexd 6660 . . 3 (((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → (0g𝑀) ∈ V)
41 ovexd 7170 . . 3 ((((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → (𝐶(.r𝑀)(𝐴𝑤)) ∈ V)
4238, 39, 40, 41mptsuppd 7836 . 2 (((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) = {𝑤𝑉 ∣ (𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀)})
43 elmapfun 8413 . . . 4 (𝐴 ∈ (𝑅m 𝑉) → Fun 𝐴)
44433ad2ant3 1132 . . 3 (((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → Fun 𝐴)
45 simp3 1135 . . 3 (((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → 𝐴 ∈ (𝑅m 𝑉))
46 suppval1 7819 . . 3 ((Fun 𝐴𝐴 ∈ (𝑅m 𝑉) ∧ (0g𝑀) ∈ V) → (𝐴 supp (0g𝑀)) = {𝑤 ∈ dom 𝐴 ∣ (𝐴𝑤) ≠ (0g𝑀)})
4744, 45, 40, 46syl3anc 1368 . 2 (((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → (𝐴 supp (0g𝑀)) = {𝑤 ∈ dom 𝐴 ∣ (𝐴𝑤) ≠ (0g𝑀)})
4835, 42, 473eqtr4d 2843 1 (((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) = (𝐴 supp (0g𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  {crab 3110  Vcvv 3441  cmpt 5110  dom cdm 5519  Fun wfun 6318  wf 6320  cfv 6324  (class class class)co 7135   supp csupp 7813  m cmap 8389  Basecbs 16475  .rcmulr 16558  0gc0g 16705  Ringcrg 19290  Domncdomn 20046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-plusg 16570  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-mgp 19233  df-ring 19292  df-nzr 20024  df-domn 20050
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator