| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | elmapi 8890 | . . . . 5
⊢ (𝐴 ∈ (𝑅 ↑m 𝑉) → 𝐴:𝑉⟶𝑅) | 
| 2 |  | fdm 6744 | . . . . . 6
⊢ (𝐴:𝑉⟶𝑅 → dom 𝐴 = 𝑉) | 
| 3 | 2 | eqcomd 2742 | . . . . 5
⊢ (𝐴:𝑉⟶𝑅 → 𝑉 = dom 𝐴) | 
| 4 | 1, 3 | syl 17 | . . . 4
⊢ (𝐴 ∈ (𝑅 ↑m 𝑉) → 𝑉 = dom 𝐴) | 
| 5 | 4 | 3ad2ant3 1135 | . . 3
⊢ (((𝑀 ∈ Domn ∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → 𝑉 = dom 𝐴) | 
| 6 |  | oveq2 7440 | . . . . . . 7
⊢ ((𝐴‘𝑤) = (0g‘𝑀) → (𝐶(.r‘𝑀)(𝐴‘𝑤)) = (𝐶(.r‘𝑀)(0g‘𝑀))) | 
| 7 |  | domnring 20708 | . . . . . . . . . . . 12
⊢ (𝑀 ∈ Domn → 𝑀 ∈ Ring) | 
| 8 | 7 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝑀 ∈ Domn ∧ 𝑉 ∈ 𝑋) → 𝑀 ∈ Ring) | 
| 9 |  | simpl 482 | . . . . . . . . . . 11
⊢ ((𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) → 𝐶 ∈ 𝑅) | 
| 10 | 8, 9 | anim12i 613 | . . . . . . . . . 10
⊢ (((𝑀 ∈ Domn ∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀))) → (𝑀 ∈ Ring ∧ 𝐶 ∈ 𝑅)) | 
| 11 | 10 | 3adant3 1132 | . . . . . . . . 9
⊢ (((𝑀 ∈ Domn ∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → (𝑀 ∈ Ring ∧ 𝐶 ∈ 𝑅)) | 
| 12 |  | rmsuppss.r | . . . . . . . . . 10
⊢ 𝑅 = (Base‘𝑀) | 
| 13 |  | eqid 2736 | . . . . . . . . . 10
⊢
(.r‘𝑀) = (.r‘𝑀) | 
| 14 |  | eqid 2736 | . . . . . . . . . 10
⊢
(0g‘𝑀) = (0g‘𝑀) | 
| 15 | 12, 13, 14 | ringrz 20292 | . . . . . . . . 9
⊢ ((𝑀 ∈ Ring ∧ 𝐶 ∈ 𝑅) → (𝐶(.r‘𝑀)(0g‘𝑀)) = (0g‘𝑀)) | 
| 16 | 11, 15 | syl 17 | . . . . . . . 8
⊢ (((𝑀 ∈ Domn ∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → (𝐶(.r‘𝑀)(0g‘𝑀)) = (0g‘𝑀)) | 
| 17 | 16 | adantr 480 | . . . . . . 7
⊢ ((((𝑀 ∈ Domn ∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → (𝐶(.r‘𝑀)(0g‘𝑀)) = (0g‘𝑀)) | 
| 18 | 6, 17 | sylan9eqr 2798 | . . . . . 6
⊢
(((((𝑀 ∈ Domn
∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) ∧ (𝐴‘𝑤) = (0g‘𝑀)) → (𝐶(.r‘𝑀)(𝐴‘𝑤)) = (0g‘𝑀)) | 
| 19 | 18 | ex 412 | . . . . 5
⊢ ((((𝑀 ∈ Domn ∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → ((𝐴‘𝑤) = (0g‘𝑀) → (𝐶(.r‘𝑀)(𝐴‘𝑤)) = (0g‘𝑀))) | 
| 20 | 19 | necon3d 2960 | . . . 4
⊢ ((((𝑀 ∈ Domn ∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → ((𝐶(.r‘𝑀)(𝐴‘𝑤)) ≠ (0g‘𝑀) → (𝐴‘𝑤) ≠ (0g‘𝑀))) | 
| 21 |  | simpl1l 1224 | . . . . . . 7
⊢ ((((𝑀 ∈ Domn ∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → 𝑀 ∈ Domn) | 
| 22 | 21 | adantr 480 | . . . . . 6
⊢
(((((𝑀 ∈ Domn
∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) ∧ (𝐴‘𝑤) ≠ (0g‘𝑀)) → 𝑀 ∈ Domn) | 
| 23 |  | simpll2 1213 | . . . . . 6
⊢
(((((𝑀 ∈ Domn
∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) ∧ (𝐴‘𝑤) ≠ (0g‘𝑀)) → (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀))) | 
| 24 |  | ffvelcdm 7100 | . . . . . . . . . . 11
⊢ ((𝐴:𝑉⟶𝑅 ∧ 𝑤 ∈ 𝑉) → (𝐴‘𝑤) ∈ 𝑅) | 
| 25 | 24 | ex 412 | . . . . . . . . . 10
⊢ (𝐴:𝑉⟶𝑅 → (𝑤 ∈ 𝑉 → (𝐴‘𝑤) ∈ 𝑅)) | 
| 26 | 1, 25 | syl 17 | . . . . . . . . 9
⊢ (𝐴 ∈ (𝑅 ↑m 𝑉) → (𝑤 ∈ 𝑉 → (𝐴‘𝑤) ∈ 𝑅)) | 
| 27 | 26 | 3ad2ant3 1135 | . . . . . . . 8
⊢ (((𝑀 ∈ Domn ∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → (𝑤 ∈ 𝑉 → (𝐴‘𝑤) ∈ 𝑅)) | 
| 28 | 27 | imp 406 | . . . . . . 7
⊢ ((((𝑀 ∈ Domn ∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → (𝐴‘𝑤) ∈ 𝑅) | 
| 29 | 28 | adantr 480 | . . . . . 6
⊢
(((((𝑀 ∈ Domn
∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) ∧ (𝐴‘𝑤) ≠ (0g‘𝑀)) → (𝐴‘𝑤) ∈ 𝑅) | 
| 30 |  | simpr 484 | . . . . . 6
⊢
(((((𝑀 ∈ Domn
∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) ∧ (𝐴‘𝑤) ≠ (0g‘𝑀)) → (𝐴‘𝑤) ≠ (0g‘𝑀)) | 
| 31 | 12, 13, 14 | domnmuln0 20710 | . . . . . 6
⊢ ((𝑀 ∈ Domn ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ ((𝐴‘𝑤) ∈ 𝑅 ∧ (𝐴‘𝑤) ≠ (0g‘𝑀))) → (𝐶(.r‘𝑀)(𝐴‘𝑤)) ≠ (0g‘𝑀)) | 
| 32 | 22, 23, 29, 30, 31 | syl112anc 1375 | . . . . 5
⊢
(((((𝑀 ∈ Domn
∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) ∧ (𝐴‘𝑤) ≠ (0g‘𝑀)) → (𝐶(.r‘𝑀)(𝐴‘𝑤)) ≠ (0g‘𝑀)) | 
| 33 | 32 | ex 412 | . . . 4
⊢ ((((𝑀 ∈ Domn ∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → ((𝐴‘𝑤) ≠ (0g‘𝑀) → (𝐶(.r‘𝑀)(𝐴‘𝑤)) ≠ (0g‘𝑀))) | 
| 34 | 20, 33 | impbid 212 | . . 3
⊢ ((((𝑀 ∈ Domn ∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → ((𝐶(.r‘𝑀)(𝐴‘𝑤)) ≠ (0g‘𝑀) ↔ (𝐴‘𝑤) ≠ (0g‘𝑀))) | 
| 35 | 5, 34 | rabeqbidva 3452 | . 2
⊢ (((𝑀 ∈ Domn ∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → {𝑤 ∈ 𝑉 ∣ (𝐶(.r‘𝑀)(𝐴‘𝑤)) ≠ (0g‘𝑀)} = {𝑤 ∈ dom 𝐴 ∣ (𝐴‘𝑤) ≠ (0g‘𝑀)}) | 
| 36 |  | fveq2 6905 | . . . . 5
⊢ (𝑣 = 𝑤 → (𝐴‘𝑣) = (𝐴‘𝑤)) | 
| 37 | 36 | oveq2d 7448 | . . . 4
⊢ (𝑣 = 𝑤 → (𝐶(.r‘𝑀)(𝐴‘𝑣)) = (𝐶(.r‘𝑀)(𝐴‘𝑤))) | 
| 38 | 37 | cbvmptv 5254 | . . 3
⊢ (𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) = (𝑤 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑤))) | 
| 39 |  | simp1r 1198 | . . 3
⊢ (((𝑀 ∈ Domn ∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → 𝑉 ∈ 𝑋) | 
| 40 |  | fvexd 6920 | . . 3
⊢ (((𝑀 ∈ Domn ∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → (0g‘𝑀) ∈ V) | 
| 41 |  | ovexd 7467 | . . 3
⊢ ((((𝑀 ∈ Domn ∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → (𝐶(.r‘𝑀)(𝐴‘𝑤)) ∈ V) | 
| 42 | 38, 39, 40, 41 | mptsuppd 8213 | . 2
⊢ (((𝑀 ∈ Domn ∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → ((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) supp (0g‘𝑀)) = {𝑤 ∈ 𝑉 ∣ (𝐶(.r‘𝑀)(𝐴‘𝑤)) ≠ (0g‘𝑀)}) | 
| 43 |  | elmapfun 8907 | . . . 4
⊢ (𝐴 ∈ (𝑅 ↑m 𝑉) → Fun 𝐴) | 
| 44 | 43 | 3ad2ant3 1135 | . . 3
⊢ (((𝑀 ∈ Domn ∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → Fun 𝐴) | 
| 45 |  | simp3 1138 | . . 3
⊢ (((𝑀 ∈ Domn ∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → 𝐴 ∈ (𝑅 ↑m 𝑉)) | 
| 46 |  | suppval1 8192 | . . 3
⊢ ((Fun
𝐴 ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ (0g‘𝑀) ∈ V) → (𝐴 supp (0g‘𝑀)) = {𝑤 ∈ dom 𝐴 ∣ (𝐴‘𝑤) ≠ (0g‘𝑀)}) | 
| 47 | 44, 45, 40, 46 | syl3anc 1372 | . 2
⊢ (((𝑀 ∈ Domn ∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → (𝐴 supp (0g‘𝑀)) = {𝑤 ∈ dom 𝐴 ∣ (𝐴‘𝑤) ≠ (0g‘𝑀)}) | 
| 48 | 35, 42, 47 | 3eqtr4d 2786 | 1
⊢ (((𝑀 ∈ Domn ∧ 𝑉 ∈ 𝑋) ∧ (𝐶 ∈ 𝑅 ∧ 𝐶 ≠ (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → ((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) supp (0g‘𝑀)) = (𝐴 supp (0g‘𝑀))) |