Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  domnmsuppn0 Structured version   Visualization version   GIF version

Theorem domnmsuppn0 48094
Description: The support of a mapping of a multiplication of a nonzero constant with a function into a (ring theoretic) domain equals the support of the function. (Contributed by AV, 11-Apr-2019.)
Hypothesis
Ref Expression
rmsuppss.r 𝑅 = (Base‘𝑀)
Assertion
Ref Expression
domnmsuppn0 (((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) = (𝐴 supp (0g𝑀)))
Distinct variable groups:   𝑣,𝐴   𝑣,𝐶   𝑣,𝑀   𝑣,𝑅   𝑣,𝑋   𝑣,𝑉

Proof of Theorem domnmsuppn0
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elmapi 8907 . . . . 5 (𝐴 ∈ (𝑅m 𝑉) → 𝐴:𝑉𝑅)
2 fdm 6756 . . . . . 6 (𝐴:𝑉𝑅 → dom 𝐴 = 𝑉)
32eqcomd 2746 . . . . 5 (𝐴:𝑉𝑅𝑉 = dom 𝐴)
41, 3syl 17 . . . 4 (𝐴 ∈ (𝑅m 𝑉) → 𝑉 = dom 𝐴)
543ad2ant3 1135 . . 3 (((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → 𝑉 = dom 𝐴)
6 oveq2 7456 . . . . . . 7 ((𝐴𝑤) = (0g𝑀) → (𝐶(.r𝑀)(𝐴𝑤)) = (𝐶(.r𝑀)(0g𝑀)))
7 domnring 20729 . . . . . . . . . . . 12 (𝑀 ∈ Domn → 𝑀 ∈ Ring)
87adantr 480 . . . . . . . . . . 11 ((𝑀 ∈ Domn ∧ 𝑉𝑋) → 𝑀 ∈ Ring)
9 simpl 482 . . . . . . . . . . 11 ((𝐶𝑅𝐶 ≠ (0g𝑀)) → 𝐶𝑅)
108, 9anim12i 612 . . . . . . . . . 10 (((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀))) → (𝑀 ∈ Ring ∧ 𝐶𝑅))
11103adant3 1132 . . . . . . . . 9 (((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → (𝑀 ∈ Ring ∧ 𝐶𝑅))
12 rmsuppss.r . . . . . . . . . 10 𝑅 = (Base‘𝑀)
13 eqid 2740 . . . . . . . . . 10 (.r𝑀) = (.r𝑀)
14 eqid 2740 . . . . . . . . . 10 (0g𝑀) = (0g𝑀)
1512, 13, 14ringrz 20317 . . . . . . . . 9 ((𝑀 ∈ Ring ∧ 𝐶𝑅) → (𝐶(.r𝑀)(0g𝑀)) = (0g𝑀))
1611, 15syl 17 . . . . . . . 8 (((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → (𝐶(.r𝑀)(0g𝑀)) = (0g𝑀))
1716adantr 480 . . . . . . 7 ((((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → (𝐶(.r𝑀)(0g𝑀)) = (0g𝑀))
186, 17sylan9eqr 2802 . . . . . 6 (((((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) ∧ (𝐴𝑤) = (0g𝑀)) → (𝐶(.r𝑀)(𝐴𝑤)) = (0g𝑀))
1918ex 412 . . . . 5 ((((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → ((𝐴𝑤) = (0g𝑀) → (𝐶(.r𝑀)(𝐴𝑤)) = (0g𝑀)))
2019necon3d 2967 . . . 4 ((((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → ((𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀) → (𝐴𝑤) ≠ (0g𝑀)))
21 simpl1l 1224 . . . . . . 7 ((((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → 𝑀 ∈ Domn)
2221adantr 480 . . . . . 6 (((((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) ∧ (𝐴𝑤) ≠ (0g𝑀)) → 𝑀 ∈ Domn)
23 simpll2 1213 . . . . . 6 (((((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) ∧ (𝐴𝑤) ≠ (0g𝑀)) → (𝐶𝑅𝐶 ≠ (0g𝑀)))
24 ffvelcdm 7115 . . . . . . . . . . 11 ((𝐴:𝑉𝑅𝑤𝑉) → (𝐴𝑤) ∈ 𝑅)
2524ex 412 . . . . . . . . . 10 (𝐴:𝑉𝑅 → (𝑤𝑉 → (𝐴𝑤) ∈ 𝑅))
261, 25syl 17 . . . . . . . . 9 (𝐴 ∈ (𝑅m 𝑉) → (𝑤𝑉 → (𝐴𝑤) ∈ 𝑅))
27263ad2ant3 1135 . . . . . . . 8 (((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → (𝑤𝑉 → (𝐴𝑤) ∈ 𝑅))
2827imp 406 . . . . . . 7 ((((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → (𝐴𝑤) ∈ 𝑅)
2928adantr 480 . . . . . 6 (((((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) ∧ (𝐴𝑤) ≠ (0g𝑀)) → (𝐴𝑤) ∈ 𝑅)
30 simpr 484 . . . . . 6 (((((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) ∧ (𝐴𝑤) ≠ (0g𝑀)) → (𝐴𝑤) ≠ (0g𝑀))
3112, 13, 14domnmuln0 20731 . . . . . 6 ((𝑀 ∈ Domn ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ ((𝐴𝑤) ∈ 𝑅 ∧ (𝐴𝑤) ≠ (0g𝑀))) → (𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀))
3222, 23, 29, 30, 31syl112anc 1374 . . . . 5 (((((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) ∧ (𝐴𝑤) ≠ (0g𝑀)) → (𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀))
3332ex 412 . . . 4 ((((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → ((𝐴𝑤) ≠ (0g𝑀) → (𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀)))
3420, 33impbid 212 . . 3 ((((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → ((𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀) ↔ (𝐴𝑤) ≠ (0g𝑀)))
355, 34rabeqbidva 3460 . 2 (((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → {𝑤𝑉 ∣ (𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀)} = {𝑤 ∈ dom 𝐴 ∣ (𝐴𝑤) ≠ (0g𝑀)})
36 fveq2 6920 . . . . 5 (𝑣 = 𝑤 → (𝐴𝑣) = (𝐴𝑤))
3736oveq2d 7464 . . . 4 (𝑣 = 𝑤 → (𝐶(.r𝑀)(𝐴𝑣)) = (𝐶(.r𝑀)(𝐴𝑤)))
3837cbvmptv 5279 . . 3 (𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) = (𝑤𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑤)))
39 simp1r 1198 . . 3 (((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → 𝑉𝑋)
40 fvexd 6935 . . 3 (((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → (0g𝑀) ∈ V)
41 ovexd 7483 . . 3 ((((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → (𝐶(.r𝑀)(𝐴𝑤)) ∈ V)
4238, 39, 40, 41mptsuppd 8228 . 2 (((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) = {𝑤𝑉 ∣ (𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀)})
43 elmapfun 8924 . . . 4 (𝐴 ∈ (𝑅m 𝑉) → Fun 𝐴)
44433ad2ant3 1135 . . 3 (((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → Fun 𝐴)
45 simp3 1138 . . 3 (((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → 𝐴 ∈ (𝑅m 𝑉))
46 suppval1 8207 . . 3 ((Fun 𝐴𝐴 ∈ (𝑅m 𝑉) ∧ (0g𝑀) ∈ V) → (𝐴 supp (0g𝑀)) = {𝑤 ∈ dom 𝐴 ∣ (𝐴𝑤) ≠ (0g𝑀)})
4744, 45, 40, 46syl3anc 1371 . 2 (((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → (𝐴 supp (0g𝑀)) = {𝑤 ∈ dom 𝐴 ∣ (𝐴𝑤) ≠ (0g𝑀)})
4835, 42, 473eqtr4d 2790 1 (((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) = (𝐴 supp (0g𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  {crab 3443  Vcvv 3488  cmpt 5249  dom cdm 5700  Fun wfun 6567  wf 6569  cfv 6573  (class class class)co 7448   supp csupp 8201  m cmap 8884  Basecbs 17258  .rcmulr 17312  0gc0g 17499  Ringcrg 20260  Domncdomn 20714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-nzr 20539  df-domn 20717
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator