Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  domnmsuppn0 Structured version   Visualization version   GIF version

Theorem domnmsuppn0 45705
Description: The support of a mapping of a multiplication of a nonzero constant with a function into a (ring theoretic) domain equals the support of the function. (Contributed by AV, 11-Apr-2019.)
Hypothesis
Ref Expression
rmsuppss.r 𝑅 = (Base‘𝑀)
Assertion
Ref Expression
domnmsuppn0 (((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) = (𝐴 supp (0g𝑀)))
Distinct variable groups:   𝑣,𝐴   𝑣,𝐶   𝑣,𝑀   𝑣,𝑅   𝑣,𝑋   𝑣,𝑉

Proof of Theorem domnmsuppn0
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elmapi 8637 . . . . 5 (𝐴 ∈ (𝑅m 𝑉) → 𝐴:𝑉𝑅)
2 fdm 6609 . . . . . 6 (𝐴:𝑉𝑅 → dom 𝐴 = 𝑉)
32eqcomd 2744 . . . . 5 (𝐴:𝑉𝑅𝑉 = dom 𝐴)
41, 3syl 17 . . . 4 (𝐴 ∈ (𝑅m 𝑉) → 𝑉 = dom 𝐴)
543ad2ant3 1134 . . 3 (((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → 𝑉 = dom 𝐴)
6 oveq2 7283 . . . . . . 7 ((𝐴𝑤) = (0g𝑀) → (𝐶(.r𝑀)(𝐴𝑤)) = (𝐶(.r𝑀)(0g𝑀)))
7 domnring 20567 . . . . . . . . . . . 12 (𝑀 ∈ Domn → 𝑀 ∈ Ring)
87adantr 481 . . . . . . . . . . 11 ((𝑀 ∈ Domn ∧ 𝑉𝑋) → 𝑀 ∈ Ring)
9 simpl 483 . . . . . . . . . . 11 ((𝐶𝑅𝐶 ≠ (0g𝑀)) → 𝐶𝑅)
108, 9anim12i 613 . . . . . . . . . 10 (((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀))) → (𝑀 ∈ Ring ∧ 𝐶𝑅))
11103adant3 1131 . . . . . . . . 9 (((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → (𝑀 ∈ Ring ∧ 𝐶𝑅))
12 rmsuppss.r . . . . . . . . . 10 𝑅 = (Base‘𝑀)
13 eqid 2738 . . . . . . . . . 10 (.r𝑀) = (.r𝑀)
14 eqid 2738 . . . . . . . . . 10 (0g𝑀) = (0g𝑀)
1512, 13, 14ringrz 19827 . . . . . . . . 9 ((𝑀 ∈ Ring ∧ 𝐶𝑅) → (𝐶(.r𝑀)(0g𝑀)) = (0g𝑀))
1611, 15syl 17 . . . . . . . 8 (((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → (𝐶(.r𝑀)(0g𝑀)) = (0g𝑀))
1716adantr 481 . . . . . . 7 ((((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → (𝐶(.r𝑀)(0g𝑀)) = (0g𝑀))
186, 17sylan9eqr 2800 . . . . . 6 (((((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) ∧ (𝐴𝑤) = (0g𝑀)) → (𝐶(.r𝑀)(𝐴𝑤)) = (0g𝑀))
1918ex 413 . . . . 5 ((((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → ((𝐴𝑤) = (0g𝑀) → (𝐶(.r𝑀)(𝐴𝑤)) = (0g𝑀)))
2019necon3d 2964 . . . 4 ((((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → ((𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀) → (𝐴𝑤) ≠ (0g𝑀)))
21 simpl1l 1223 . . . . . . 7 ((((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → 𝑀 ∈ Domn)
2221adantr 481 . . . . . 6 (((((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) ∧ (𝐴𝑤) ≠ (0g𝑀)) → 𝑀 ∈ Domn)
23 simpll2 1212 . . . . . 6 (((((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) ∧ (𝐴𝑤) ≠ (0g𝑀)) → (𝐶𝑅𝐶 ≠ (0g𝑀)))
24 ffvelrn 6959 . . . . . . . . . . 11 ((𝐴:𝑉𝑅𝑤𝑉) → (𝐴𝑤) ∈ 𝑅)
2524ex 413 . . . . . . . . . 10 (𝐴:𝑉𝑅 → (𝑤𝑉 → (𝐴𝑤) ∈ 𝑅))
261, 25syl 17 . . . . . . . . 9 (𝐴 ∈ (𝑅m 𝑉) → (𝑤𝑉 → (𝐴𝑤) ∈ 𝑅))
27263ad2ant3 1134 . . . . . . . 8 (((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → (𝑤𝑉 → (𝐴𝑤) ∈ 𝑅))
2827imp 407 . . . . . . 7 ((((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → (𝐴𝑤) ∈ 𝑅)
2928adantr 481 . . . . . 6 (((((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) ∧ (𝐴𝑤) ≠ (0g𝑀)) → (𝐴𝑤) ∈ 𝑅)
30 simpr 485 . . . . . 6 (((((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) ∧ (𝐴𝑤) ≠ (0g𝑀)) → (𝐴𝑤) ≠ (0g𝑀))
3112, 13, 14domnmuln0 20569 . . . . . 6 ((𝑀 ∈ Domn ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ ((𝐴𝑤) ∈ 𝑅 ∧ (𝐴𝑤) ≠ (0g𝑀))) → (𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀))
3222, 23, 29, 30, 31syl112anc 1373 . . . . 5 (((((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) ∧ (𝐴𝑤) ≠ (0g𝑀)) → (𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀))
3332ex 413 . . . 4 ((((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → ((𝐴𝑤) ≠ (0g𝑀) → (𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀)))
3420, 33impbid 211 . . 3 ((((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → ((𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀) ↔ (𝐴𝑤) ≠ (0g𝑀)))
355, 34rabeqbidva 3421 . 2 (((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → {𝑤𝑉 ∣ (𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀)} = {𝑤 ∈ dom 𝐴 ∣ (𝐴𝑤) ≠ (0g𝑀)})
36 fveq2 6774 . . . . 5 (𝑣 = 𝑤 → (𝐴𝑣) = (𝐴𝑤))
3736oveq2d 7291 . . . 4 (𝑣 = 𝑤 → (𝐶(.r𝑀)(𝐴𝑣)) = (𝐶(.r𝑀)(𝐴𝑤)))
3837cbvmptv 5187 . . 3 (𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) = (𝑤𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑤)))
39 simp1r 1197 . . 3 (((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → 𝑉𝑋)
40 fvexd 6789 . . 3 (((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → (0g𝑀) ∈ V)
41 ovexd 7310 . . 3 ((((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → (𝐶(.r𝑀)(𝐴𝑤)) ∈ V)
4238, 39, 40, 41mptsuppd 8003 . 2 (((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) = {𝑤𝑉 ∣ (𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀)})
43 elmapfun 8654 . . . 4 (𝐴 ∈ (𝑅m 𝑉) → Fun 𝐴)
44433ad2ant3 1134 . . 3 (((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → Fun 𝐴)
45 simp3 1137 . . 3 (((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → 𝐴 ∈ (𝑅m 𝑉))
46 suppval1 7983 . . 3 ((Fun 𝐴𝐴 ∈ (𝑅m 𝑉) ∧ (0g𝑀) ∈ V) → (𝐴 supp (0g𝑀)) = {𝑤 ∈ dom 𝐴 ∣ (𝐴𝑤) ≠ (0g𝑀)})
4744, 45, 40, 46syl3anc 1370 . 2 (((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → (𝐴 supp (0g𝑀)) = {𝑤 ∈ dom 𝐴 ∣ (𝐴𝑤) ≠ (0g𝑀)})
4835, 42, 473eqtr4d 2788 1 (((𝑀 ∈ Domn ∧ 𝑉𝑋) ∧ (𝐶𝑅𝐶 ≠ (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) = (𝐴 supp (0g𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  {crab 3068  Vcvv 3432  cmpt 5157  dom cdm 5589  Fun wfun 6427  wf 6429  cfv 6433  (class class class)co 7275   supp csupp 7977  m cmap 8615  Basecbs 16912  .rcmulr 16963  0gc0g 17150  Ringcrg 19783  Domncdomn 20551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-mgp 19721  df-ring 19785  df-nzr 20529  df-domn 20555
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator