| Step | Hyp | Ref
| Expression |
| 1 | | gsumpropd2.b |
. . . . 5
⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) |
| 2 | 1 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (Base‘𝐺)) → (Base‘𝐺) = (Base‘𝐻)) |
| 3 | | gsumpropd2.e |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g‘𝐺)𝑡) = (𝑠(+g‘𝐻)𝑡)) |
| 4 | 3 | eqeq1d 2739 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → ((𝑠(+g‘𝐺)𝑡) = 𝑡 ↔ (𝑠(+g‘𝐻)𝑡) = 𝑡)) |
| 5 | 3 | oveqrspc2v 7458 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → (𝑎(+g‘𝐺)𝑏) = (𝑎(+g‘𝐻)𝑏)) |
| 6 | 5 | oveqrspc2v 7458 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑡 ∈ (Base‘𝐺) ∧ 𝑠 ∈ (Base‘𝐺))) → (𝑡(+g‘𝐺)𝑠) = (𝑡(+g‘𝐻)𝑠)) |
| 7 | 6 | ancom2s 650 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑡(+g‘𝐺)𝑠) = (𝑡(+g‘𝐻)𝑠)) |
| 8 | 7 | eqeq1d 2739 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → ((𝑡(+g‘𝐺)𝑠) = 𝑡 ↔ (𝑡(+g‘𝐻)𝑠) = 𝑡)) |
| 9 | 4, 8 | anbi12d 632 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡) ↔ ((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡))) |
| 10 | 9 | anassrs 467 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ (Base‘𝐺)) ∧ 𝑡 ∈ (Base‘𝐺)) → (((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡) ↔ ((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡))) |
| 11 | 2, 10 | raleqbidva 3332 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (Base‘𝐺)) → (∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡) ↔ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡))) |
| 12 | 1, 11 | rabeqbidva 3453 |
. . . 4
⊢ (𝜑 → {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)} = {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)}) |
| 13 | 12 | sseq2d 4016 |
. . 3
⊢ (𝜑 → (ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)} ↔ ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)})) |
| 14 | | eqidd 2738 |
. . . 4
⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐺)) |
| 15 | 14, 1, 3 | grpidpropd 18675 |
. . 3
⊢ (𝜑 → (0g‘𝐺) = (0g‘𝐻)) |
| 16 | | simprl 771 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) → 𝑛 ∈ (ℤ≥‘𝑚)) |
| 17 | | gsumpropd2.r |
. . . . . . . . . . . . 13
⊢ (𝜑 → ran 𝐹 ⊆ (Base‘𝐺)) |
| 18 | 17 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → ran 𝐹 ⊆ (Base‘𝐺)) |
| 19 | | gsumpropd2.n |
. . . . . . . . . . . . . 14
⊢ (𝜑 → Fun 𝐹) |
| 20 | 19 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → Fun 𝐹) |
| 21 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → 𝑠 ∈ (𝑚...𝑛)) |
| 22 | | simplrr 778 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → dom 𝐹 = (𝑚...𝑛)) |
| 23 | 21, 22 | eleqtrrd 2844 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → 𝑠 ∈ dom 𝐹) |
| 24 | | fvelrn 7096 |
. . . . . . . . . . . . 13
⊢ ((Fun
𝐹 ∧ 𝑠 ∈ dom 𝐹) → (𝐹‘𝑠) ∈ ran 𝐹) |
| 25 | 20, 23, 24 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → (𝐹‘𝑠) ∈ ran 𝐹) |
| 26 | 18, 25 | sseldd 3984 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → (𝐹‘𝑠) ∈ (Base‘𝐺)) |
| 27 | | gsumpropd2.c |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g‘𝐺)𝑡) ∈ (Base‘𝐺)) |
| 28 | 27 | adantlr 715 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g‘𝐺)𝑡) ∈ (Base‘𝐺)) |
| 29 | 3 | adantlr 715 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g‘𝐺)𝑡) = (𝑠(+g‘𝐻)𝑡)) |
| 30 | 16, 26, 28, 29 | seqfeq4 14092 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) → (seq𝑚((+g‘𝐺), 𝐹)‘𝑛) = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛)) |
| 31 | 30 | eqeq2d 2748 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) → (𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛) ↔ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛))) |
| 32 | 31 | anassrs 467 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑚)) ∧ dom 𝐹 = (𝑚...𝑛)) → (𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛) ↔ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛))) |
| 33 | 32 | pm5.32da 579 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑚)) → ((dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛)) ↔ (dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛)))) |
| 34 | 33 | rexbidva 3177 |
. . . . . 6
⊢ (𝜑 → (∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛)))) |
| 35 | 34 | exbidv 1921 |
. . . . 5
⊢ (𝜑 → (∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛)) ↔ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛)))) |
| 36 | 35 | iotabidv 6545 |
. . . 4
⊢ (𝜑 → (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛))) = (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛)))) |
| 37 | 12 | difeq2d 4126 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)}) = (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)})) |
| 38 | 37 | imaeq2d 6078 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)})) = (◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)}))) |
| 39 | | gsumprop2dlem.1 |
. . . . . . . . . . . . . 14
⊢ 𝐴 = (◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)})) |
| 40 | | gsumprop2dlem.2 |
. . . . . . . . . . . . . 14
⊢ 𝐵 = (◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)})) |
| 41 | 38, 39, 40 | 3eqtr4g 2802 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 = 𝐵) |
| 42 | 41 | fveq2d 6910 |
. . . . . . . . . . . 12
⊢ (𝜑 → (♯‘𝐴) = (♯‘𝐵)) |
| 43 | 42 | fveq2d 6910 |
. . . . . . . . . . 11
⊢ (𝜑 →
(seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘𝐴)) = (seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘𝐵))) |
| 44 | 43 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) →
(seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘𝐴)) = (seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘𝐵))) |
| 45 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ (♯‘𝐵) ∈
(ℤ≥‘1)) → (♯‘𝐵) ∈
(ℤ≥‘1)) |
| 46 | 17 | ad3antrrr 730 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ (♯‘𝐵) ∈
(ℤ≥‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → ran 𝐹 ⊆ (Base‘𝐺)) |
| 47 | | f1ofun 6850 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → Fun 𝑓) |
| 48 | 47 | ad3antlr 731 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ (♯‘𝐵) ∈
(ℤ≥‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → Fun 𝑓) |
| 49 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ (♯‘𝐵) ∈
(ℤ≥‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → 𝑎 ∈ (1...(♯‘𝐵))) |
| 50 | | f1odm 6852 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → dom 𝑓 = (1...(♯‘𝐴))) |
| 51 | 50 | ad3antlr 731 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ (♯‘𝐵) ∈
(ℤ≥‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → dom 𝑓 = (1...(♯‘𝐴))) |
| 52 | 42 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (1...(♯‘𝐴)) = (1...(♯‘𝐵))) |
| 53 | 52 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ (♯‘𝐵) ∈
(ℤ≥‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → (1...(♯‘𝐴)) = (1...(♯‘𝐵))) |
| 54 | 51, 53 | eqtrd 2777 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ (♯‘𝐵) ∈
(ℤ≥‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → dom 𝑓 = (1...(♯‘𝐵))) |
| 55 | 49, 54 | eleqtrrd 2844 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ (♯‘𝐵) ∈
(ℤ≥‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → 𝑎 ∈ dom 𝑓) |
| 56 | | fvco 7007 |
. . . . . . . . . . . . . . 15
⊢ ((Fun
𝑓 ∧ 𝑎 ∈ dom 𝑓) → ((𝐹 ∘ 𝑓)‘𝑎) = (𝐹‘(𝑓‘𝑎))) |
| 57 | 48, 55, 56 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ (♯‘𝐵) ∈
(ℤ≥‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → ((𝐹 ∘ 𝑓)‘𝑎) = (𝐹‘(𝑓‘𝑎))) |
| 58 | 19 | ad3antrrr 730 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ (♯‘𝐵) ∈
(ℤ≥‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → Fun 𝐹) |
| 59 | | difpreima 7085 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (Fun
𝐹 → (◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)})) = ((◡𝐹 “ V) ∖ (◡𝐹 “ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)}))) |
| 60 | 19, 59 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)})) = ((◡𝐹 “ V) ∖ (◡𝐹 “ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)}))) |
| 61 | 39, 60 | eqtrid 2789 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐴 = ((◡𝐹 “ V) ∖ (◡𝐹 “ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)}))) |
| 62 | | difss 4136 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((◡𝐹 “ V) ∖ (◡𝐹 “ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)})) ⊆ (◡𝐹 “ V) |
| 63 | 61, 62 | eqsstrdi 4028 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐴 ⊆ (◡𝐹 “ V)) |
| 64 | | dfdm4 5906 |
. . . . . . . . . . . . . . . . . . 19
⊢ dom 𝐹 = ran ◡𝐹 |
| 65 | | dfrn4 6222 |
. . . . . . . . . . . . . . . . . . 19
⊢ ran ◡𝐹 = (◡𝐹 “ V) |
| 66 | 64, 65 | eqtri 2765 |
. . . . . . . . . . . . . . . . . 18
⊢ dom 𝐹 = (◡𝐹 “ V) |
| 67 | 63, 66 | sseqtrrdi 4025 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐴 ⊆ dom 𝐹) |
| 68 | 67 | ad3antrrr 730 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ (♯‘𝐵) ∈
(ℤ≥‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → 𝐴 ⊆ dom 𝐹) |
| 69 | | f1of 6848 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → 𝑓:(1...(♯‘𝐴))⟶𝐴) |
| 70 | 69 | ad3antlr 731 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ (♯‘𝐵) ∈
(ℤ≥‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → 𝑓:(1...(♯‘𝐴))⟶𝐴) |
| 71 | 49, 53 | eleqtrrd 2844 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ (♯‘𝐵) ∈
(ℤ≥‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → 𝑎 ∈ (1...(♯‘𝐴))) |
| 72 | 70, 71 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ (♯‘𝐵) ∈
(ℤ≥‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → (𝑓‘𝑎) ∈ 𝐴) |
| 73 | 68, 72 | sseldd 3984 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ (♯‘𝐵) ∈
(ℤ≥‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → (𝑓‘𝑎) ∈ dom 𝐹) |
| 74 | | fvelrn 7096 |
. . . . . . . . . . . . . . 15
⊢ ((Fun
𝐹 ∧ (𝑓‘𝑎) ∈ dom 𝐹) → (𝐹‘(𝑓‘𝑎)) ∈ ran 𝐹) |
| 75 | 58, 73, 74 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ (♯‘𝐵) ∈
(ℤ≥‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → (𝐹‘(𝑓‘𝑎)) ∈ ran 𝐹) |
| 76 | 57, 75 | eqeltrd 2841 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ (♯‘𝐵) ∈
(ℤ≥‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → ((𝐹 ∘ 𝑓)‘𝑎) ∈ ran 𝐹) |
| 77 | 46, 76 | sseldd 3984 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ (♯‘𝐵) ∈
(ℤ≥‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → ((𝐹 ∘ 𝑓)‘𝑎) ∈ (Base‘𝐺)) |
| 78 | 27 | caovclg 7625 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → (𝑎(+g‘𝐺)𝑏) ∈ (Base‘𝐺)) |
| 79 | 78 | ad4ant14 752 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ (♯‘𝐵) ∈
(ℤ≥‘1)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → (𝑎(+g‘𝐺)𝑏) ∈ (Base‘𝐺)) |
| 80 | 5 | ad4ant14 752 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ (♯‘𝐵) ∈
(ℤ≥‘1)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → (𝑎(+g‘𝐺)𝑏) = (𝑎(+g‘𝐻)𝑏)) |
| 81 | 45, 77, 79, 80 | seqfeq4 14092 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ (♯‘𝐵) ∈
(ℤ≥‘1)) → (seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘𝐵)) = (seq1((+g‘𝐻), (𝐹 ∘ 𝑓))‘(♯‘𝐵))) |
| 82 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ¬ (♯‘𝐵) ∈
(ℤ≥‘1)) → ¬ (♯‘𝐵) ∈
(ℤ≥‘1)) |
| 83 | | 1z 12647 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
ℤ |
| 84 | | seqfn 14054 |
. . . . . . . . . . . . . . . . 17
⊢ (1 ∈
ℤ → seq1((+g‘𝐺), (𝐹 ∘ 𝑓)) Fn
(ℤ≥‘1)) |
| 85 | | fndm 6671 |
. . . . . . . . . . . . . . . . 17
⊢
(seq1((+g‘𝐺), (𝐹 ∘ 𝑓)) Fn (ℤ≥‘1) →
dom seq1((+g‘𝐺), (𝐹 ∘ 𝑓)) =
(ℤ≥‘1)) |
| 86 | 83, 84, 85 | mp2b 10 |
. . . . . . . . . . . . . . . 16
⊢ dom
seq1((+g‘𝐺), (𝐹 ∘ 𝑓)) =
(ℤ≥‘1) |
| 87 | 86 | eleq2i 2833 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝐵)
∈ dom seq1((+g‘𝐺), (𝐹 ∘ 𝑓)) ↔ (♯‘𝐵) ∈
(ℤ≥‘1)) |
| 88 | 82, 87 | sylnibr 329 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ¬ (♯‘𝐵) ∈
(ℤ≥‘1)) → ¬ (♯‘𝐵) ∈ dom seq1((+g‘𝐺), (𝐹 ∘ 𝑓))) |
| 89 | | ndmfv 6941 |
. . . . . . . . . . . . . 14
⊢ (¬
(♯‘𝐵) ∈
dom seq1((+g‘𝐺), (𝐹 ∘ 𝑓)) → (seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘𝐵)) = ∅) |
| 90 | 88, 89 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ (♯‘𝐵) ∈
(ℤ≥‘1)) → (seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘𝐵)) = ∅) |
| 91 | | seqfn 14054 |
. . . . . . . . . . . . . . . . 17
⊢ (1 ∈
ℤ → seq1((+g‘𝐻), (𝐹 ∘ 𝑓)) Fn
(ℤ≥‘1)) |
| 92 | | fndm 6671 |
. . . . . . . . . . . . . . . . 17
⊢
(seq1((+g‘𝐻), (𝐹 ∘ 𝑓)) Fn (ℤ≥‘1) →
dom seq1((+g‘𝐻), (𝐹 ∘ 𝑓)) =
(ℤ≥‘1)) |
| 93 | 83, 91, 92 | mp2b 10 |
. . . . . . . . . . . . . . . 16
⊢ dom
seq1((+g‘𝐻), (𝐹 ∘ 𝑓)) =
(ℤ≥‘1) |
| 94 | 93 | eleq2i 2833 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝐵)
∈ dom seq1((+g‘𝐻), (𝐹 ∘ 𝑓)) ↔ (♯‘𝐵) ∈
(ℤ≥‘1)) |
| 95 | 82, 94 | sylnibr 329 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ¬ (♯‘𝐵) ∈
(ℤ≥‘1)) → ¬ (♯‘𝐵) ∈ dom seq1((+g‘𝐻), (𝐹 ∘ 𝑓))) |
| 96 | | ndmfv 6941 |
. . . . . . . . . . . . . 14
⊢ (¬
(♯‘𝐵) ∈
dom seq1((+g‘𝐻), (𝐹 ∘ 𝑓)) → (seq1((+g‘𝐻), (𝐹 ∘ 𝑓))‘(♯‘𝐵)) = ∅) |
| 97 | 95, 96 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ (♯‘𝐵) ∈
(ℤ≥‘1)) → (seq1((+g‘𝐻), (𝐹 ∘ 𝑓))‘(♯‘𝐵)) = ∅) |
| 98 | 90, 97 | eqtr4d 2780 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ (♯‘𝐵) ∈
(ℤ≥‘1)) → (seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘𝐵)) = (seq1((+g‘𝐻), (𝐹 ∘ 𝑓))‘(♯‘𝐵))) |
| 99 | 98 | adantlr 715 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ ¬
(♯‘𝐵) ∈
(ℤ≥‘1)) → (seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘𝐵)) = (seq1((+g‘𝐻), (𝐹 ∘ 𝑓))‘(♯‘𝐵))) |
| 100 | 81, 99 | pm2.61dan 813 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) →
(seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘𝐵)) = (seq1((+g‘𝐻), (𝐹 ∘ 𝑓))‘(♯‘𝐵))) |
| 101 | 44, 100 | eqtrd 2777 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) →
(seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘𝐴)) = (seq1((+g‘𝐻), (𝐹 ∘ 𝑓))‘(♯‘𝐵))) |
| 102 | 101 | eqeq2d 2748 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) → (𝑥 = (seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘𝐴)) ↔ 𝑥 = (seq1((+g‘𝐻), (𝐹 ∘ 𝑓))‘(♯‘𝐵)))) |
| 103 | 102 | pm5.32da 579 |
. . . . . . 7
⊢ (𝜑 → ((𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 ∧ 𝑥 = (seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘𝐴))) ↔ (𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 ∧ 𝑥 = (seq1((+g‘𝐻), (𝐹 ∘ 𝑓))‘(♯‘𝐵))))) |
| 104 | 52 | f1oeq2d 6844 |
. . . . . . . . 9
⊢ (𝜑 → (𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 ↔ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐴)) |
| 105 | 41 | f1oeq3d 6845 |
. . . . . . . . 9
⊢ (𝜑 → (𝑓:(1...(♯‘𝐵))–1-1-onto→𝐴 ↔ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) |
| 106 | 104, 105 | bitrd 279 |
. . . . . . . 8
⊢ (𝜑 → (𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 ↔ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) |
| 107 | 106 | anbi1d 631 |
. . . . . . 7
⊢ (𝜑 → ((𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 ∧ 𝑥 = (seq1((+g‘𝐻), (𝐹 ∘ 𝑓))‘(♯‘𝐵))) ↔ (𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵 ∧ 𝑥 = (seq1((+g‘𝐻), (𝐹 ∘ 𝑓))‘(♯‘𝐵))))) |
| 108 | 103, 107 | bitrd 279 |
. . . . . 6
⊢ (𝜑 → ((𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 ∧ 𝑥 = (seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘𝐴))) ↔ (𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵 ∧ 𝑥 = (seq1((+g‘𝐻), (𝐹 ∘ 𝑓))‘(♯‘𝐵))))) |
| 109 | 108 | exbidv 1921 |
. . . . 5
⊢ (𝜑 → (∃𝑓(𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 ∧ 𝑥 = (seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘𝐴))) ↔ ∃𝑓(𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵 ∧ 𝑥 = (seq1((+g‘𝐻), (𝐹 ∘ 𝑓))‘(♯‘𝐵))))) |
| 110 | 109 | iotabidv 6545 |
. . . 4
⊢ (𝜑 → (℩𝑥∃𝑓(𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 ∧ 𝑥 = (seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘𝐴)))) = (℩𝑥∃𝑓(𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵 ∧ 𝑥 = (seq1((+g‘𝐻), (𝐹 ∘ 𝑓))‘(♯‘𝐵))))) |
| 111 | 36, 110 | ifeq12d 4547 |
. . 3
⊢ (𝜑 → if(dom 𝐹 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 ∧ 𝑥 = (seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘𝐴))))) = if(dom 𝐹 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵 ∧ 𝑥 = (seq1((+g‘𝐻), (𝐹 ∘ 𝑓))‘(♯‘𝐵)))))) |
| 112 | 13, 15, 111 | ifbieq12d 4554 |
. 2
⊢ (𝜑 → if(ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)}, (0g‘𝐺), if(dom 𝐹 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 ∧ 𝑥 = (seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘𝐴)))))) = if(ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)}, (0g‘𝐻), if(dom 𝐹 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵 ∧ 𝑥 = (seq1((+g‘𝐻), (𝐹 ∘ 𝑓))‘(♯‘𝐵))))))) |
| 113 | | eqid 2737 |
. . 3
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 114 | | eqid 2737 |
. . 3
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 115 | | eqid 2737 |
. . 3
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 116 | | eqid 2737 |
. . 3
⊢ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)} = {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)} |
| 117 | 39 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐴 = (◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)}))) |
| 118 | | gsumpropd2.g |
. . 3
⊢ (𝜑 → 𝐺 ∈ 𝑊) |
| 119 | | gsumpropd2.f |
. . 3
⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| 120 | | eqidd 2738 |
. . 3
⊢ (𝜑 → dom 𝐹 = dom 𝐹) |
| 121 | 113, 114,
115, 116, 117, 118, 119, 120 | gsumvalx 18689 |
. 2
⊢ (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)}, (0g‘𝐺), if(dom 𝐹 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 ∧ 𝑥 = (seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘𝐴))))))) |
| 122 | | eqid 2737 |
. . 3
⊢
(Base‘𝐻) =
(Base‘𝐻) |
| 123 | | eqid 2737 |
. . 3
⊢
(0g‘𝐻) = (0g‘𝐻) |
| 124 | | eqid 2737 |
. . 3
⊢
(+g‘𝐻) = (+g‘𝐻) |
| 125 | | eqid 2737 |
. . 3
⊢ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)} = {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)} |
| 126 | 40 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐵 = (◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)}))) |
| 127 | | gsumpropd2.h |
. . 3
⊢ (𝜑 → 𝐻 ∈ 𝑋) |
| 128 | 122, 123,
124, 125, 126, 127, 119, 120 | gsumvalx 18689 |
. 2
⊢ (𝜑 → (𝐻 Σg 𝐹) = if(ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)}, (0g‘𝐻), if(dom 𝐹 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵 ∧ 𝑥 = (seq1((+g‘𝐻), (𝐹 ∘ 𝑓))‘(♯‘𝐵))))))) |
| 129 | 112, 121,
128 | 3eqtr4d 2787 |
1
⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹)) |