Step | Hyp | Ref
| Expression |
1 | | gsumpropd2.b |
. . . . 5
⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) |
2 | 1 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (Base‘𝐺)) → (Base‘𝐺) = (Base‘𝐻)) |
3 | | gsumpropd2.e |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g‘𝐺)𝑡) = (𝑠(+g‘𝐻)𝑡)) |
4 | 3 | eqeq1d 2740 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → ((𝑠(+g‘𝐺)𝑡) = 𝑡 ↔ (𝑠(+g‘𝐻)𝑡) = 𝑡)) |
5 | 3 | oveqrspc2v 7302 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → (𝑎(+g‘𝐺)𝑏) = (𝑎(+g‘𝐻)𝑏)) |
6 | 5 | oveqrspc2v 7302 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑡 ∈ (Base‘𝐺) ∧ 𝑠 ∈ (Base‘𝐺))) → (𝑡(+g‘𝐺)𝑠) = (𝑡(+g‘𝐻)𝑠)) |
7 | 6 | ancom2s 647 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑡(+g‘𝐺)𝑠) = (𝑡(+g‘𝐻)𝑠)) |
8 | 7 | eqeq1d 2740 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → ((𝑡(+g‘𝐺)𝑠) = 𝑡 ↔ (𝑡(+g‘𝐻)𝑠) = 𝑡)) |
9 | 4, 8 | anbi12d 631 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡) ↔ ((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡))) |
10 | 9 | anassrs 468 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ (Base‘𝐺)) ∧ 𝑡 ∈ (Base‘𝐺)) → (((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡) ↔ ((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡))) |
11 | 2, 10 | raleqbidva 3354 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (Base‘𝐺)) → (∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡) ↔ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡))) |
12 | 1, 11 | rabeqbidva 3421 |
. . . 4
⊢ (𝜑 → {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)} = {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)}) |
13 | 12 | sseq2d 3953 |
. . 3
⊢ (𝜑 → (ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)} ↔ ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)})) |
14 | | eqidd 2739 |
. . . 4
⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐺)) |
15 | 14, 1, 3 | grpidpropd 18346 |
. . 3
⊢ (𝜑 → (0g‘𝐺) = (0g‘𝐻)) |
16 | | simprl 768 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) → 𝑛 ∈ (ℤ≥‘𝑚)) |
17 | | gsumpropd2.r |
. . . . . . . . . . . . 13
⊢ (𝜑 → ran 𝐹 ⊆ (Base‘𝐺)) |
18 | 17 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → ran 𝐹 ⊆ (Base‘𝐺)) |
19 | | gsumpropd2.n |
. . . . . . . . . . . . . 14
⊢ (𝜑 → Fun 𝐹) |
20 | 19 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → Fun 𝐹) |
21 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → 𝑠 ∈ (𝑚...𝑛)) |
22 | | simplrr 775 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → dom 𝐹 = (𝑚...𝑛)) |
23 | 21, 22 | eleqtrrd 2842 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → 𝑠 ∈ dom 𝐹) |
24 | | fvelrn 6954 |
. . . . . . . . . . . . 13
⊢ ((Fun
𝐹 ∧ 𝑠 ∈ dom 𝐹) → (𝐹‘𝑠) ∈ ran 𝐹) |
25 | 20, 23, 24 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → (𝐹‘𝑠) ∈ ran 𝐹) |
26 | 18, 25 | sseldd 3922 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → (𝐹‘𝑠) ∈ (Base‘𝐺)) |
27 | | gsumpropd2.c |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g‘𝐺)𝑡) ∈ (Base‘𝐺)) |
28 | 27 | adantlr 712 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g‘𝐺)𝑡) ∈ (Base‘𝐺)) |
29 | 3 | adantlr 712 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g‘𝐺)𝑡) = (𝑠(+g‘𝐻)𝑡)) |
30 | 16, 26, 28, 29 | seqfeq4 13772 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) → (seq𝑚((+g‘𝐺), 𝐹)‘𝑛) = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛)) |
31 | 30 | eqeq2d 2749 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) → (𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛) ↔ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛))) |
32 | 31 | anassrs 468 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑚)) ∧ dom 𝐹 = (𝑚...𝑛)) → (𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛) ↔ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛))) |
33 | 32 | pm5.32da 579 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑚)) → ((dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛)) ↔ (dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛)))) |
34 | 33 | rexbidva 3225 |
. . . . . 6
⊢ (𝜑 → (∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛)))) |
35 | 34 | exbidv 1924 |
. . . . 5
⊢ (𝜑 → (∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛)) ↔ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛)))) |
36 | 35 | iotabidv 6417 |
. . . 4
⊢ (𝜑 → (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛))) = (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛)))) |
37 | 12 | difeq2d 4057 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)}) = (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)})) |
38 | 37 | imaeq2d 5969 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)})) = (◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)}))) |
39 | | gsumprop2dlem.1 |
. . . . . . . . . . . . . 14
⊢ 𝐴 = (◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)})) |
40 | | gsumprop2dlem.2 |
. . . . . . . . . . . . . 14
⊢ 𝐵 = (◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)})) |
41 | 38, 39, 40 | 3eqtr4g 2803 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 = 𝐵) |
42 | 41 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ (𝜑 → (♯‘𝐴) = (♯‘𝐵)) |
43 | 42 | fveq2d 6778 |
. . . . . . . . . . 11
⊢ (𝜑 →
(seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘𝐴)) = (seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘𝐵))) |
44 | 43 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) →
(seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘𝐴)) = (seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘𝐵))) |
45 | | simpr 485 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ (♯‘𝐵) ∈
(ℤ≥‘1)) → (♯‘𝐵) ∈
(ℤ≥‘1)) |
46 | 17 | ad3antrrr 727 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ (♯‘𝐵) ∈
(ℤ≥‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → ran 𝐹 ⊆ (Base‘𝐺)) |
47 | | f1ofun 6718 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → Fun 𝑓) |
48 | 47 | ad3antlr 728 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ (♯‘𝐵) ∈
(ℤ≥‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → Fun 𝑓) |
49 | | simpr 485 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ (♯‘𝐵) ∈
(ℤ≥‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → 𝑎 ∈ (1...(♯‘𝐵))) |
50 | | f1odm 6720 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → dom 𝑓 = (1...(♯‘𝐴))) |
51 | 50 | ad3antlr 728 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ (♯‘𝐵) ∈
(ℤ≥‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → dom 𝑓 = (1...(♯‘𝐴))) |
52 | 42 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (1...(♯‘𝐴)) = (1...(♯‘𝐵))) |
53 | 52 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ (♯‘𝐵) ∈
(ℤ≥‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → (1...(♯‘𝐴)) = (1...(♯‘𝐵))) |
54 | 51, 53 | eqtrd 2778 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ (♯‘𝐵) ∈
(ℤ≥‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → dom 𝑓 = (1...(♯‘𝐵))) |
55 | 49, 54 | eleqtrrd 2842 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ (♯‘𝐵) ∈
(ℤ≥‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → 𝑎 ∈ dom 𝑓) |
56 | | fvco 6866 |
. . . . . . . . . . . . . . 15
⊢ ((Fun
𝑓 ∧ 𝑎 ∈ dom 𝑓) → ((𝐹 ∘ 𝑓)‘𝑎) = (𝐹‘(𝑓‘𝑎))) |
57 | 48, 55, 56 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ (♯‘𝐵) ∈
(ℤ≥‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → ((𝐹 ∘ 𝑓)‘𝑎) = (𝐹‘(𝑓‘𝑎))) |
58 | 19 | ad3antrrr 727 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ (♯‘𝐵) ∈
(ℤ≥‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → Fun 𝐹) |
59 | | difpreima 6942 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (Fun
𝐹 → (◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)})) = ((◡𝐹 “ V) ∖ (◡𝐹 “ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)}))) |
60 | 19, 59 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)})) = ((◡𝐹 “ V) ∖ (◡𝐹 “ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)}))) |
61 | 39, 60 | eqtrid 2790 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐴 = ((◡𝐹 “ V) ∖ (◡𝐹 “ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)}))) |
62 | | difss 4066 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((◡𝐹 “ V) ∖ (◡𝐹 “ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)})) ⊆ (◡𝐹 “ V) |
63 | 61, 62 | eqsstrdi 3975 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐴 ⊆ (◡𝐹 “ V)) |
64 | | dfdm4 5804 |
. . . . . . . . . . . . . . . . . . 19
⊢ dom 𝐹 = ran ◡𝐹 |
65 | | dfrn4 6105 |
. . . . . . . . . . . . . . . . . . 19
⊢ ran ◡𝐹 = (◡𝐹 “ V) |
66 | 64, 65 | eqtri 2766 |
. . . . . . . . . . . . . . . . . 18
⊢ dom 𝐹 = (◡𝐹 “ V) |
67 | 63, 66 | sseqtrrdi 3972 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐴 ⊆ dom 𝐹) |
68 | 67 | ad3antrrr 727 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ (♯‘𝐵) ∈
(ℤ≥‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → 𝐴 ⊆ dom 𝐹) |
69 | | f1of 6716 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → 𝑓:(1...(♯‘𝐴))⟶𝐴) |
70 | 69 | ad3antlr 728 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ (♯‘𝐵) ∈
(ℤ≥‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → 𝑓:(1...(♯‘𝐴))⟶𝐴) |
71 | 49, 53 | eleqtrrd 2842 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ (♯‘𝐵) ∈
(ℤ≥‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → 𝑎 ∈ (1...(♯‘𝐴))) |
72 | 70, 71 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ (♯‘𝐵) ∈
(ℤ≥‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → (𝑓‘𝑎) ∈ 𝐴) |
73 | 68, 72 | sseldd 3922 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ (♯‘𝐵) ∈
(ℤ≥‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → (𝑓‘𝑎) ∈ dom 𝐹) |
74 | | fvelrn 6954 |
. . . . . . . . . . . . . . 15
⊢ ((Fun
𝐹 ∧ (𝑓‘𝑎) ∈ dom 𝐹) → (𝐹‘(𝑓‘𝑎)) ∈ ran 𝐹) |
75 | 58, 73, 74 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ (♯‘𝐵) ∈
(ℤ≥‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → (𝐹‘(𝑓‘𝑎)) ∈ ran 𝐹) |
76 | 57, 75 | eqeltrd 2839 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ (♯‘𝐵) ∈
(ℤ≥‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → ((𝐹 ∘ 𝑓)‘𝑎) ∈ ran 𝐹) |
77 | 46, 76 | sseldd 3922 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ (♯‘𝐵) ∈
(ℤ≥‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → ((𝐹 ∘ 𝑓)‘𝑎) ∈ (Base‘𝐺)) |
78 | 27 | caovclg 7464 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → (𝑎(+g‘𝐺)𝑏) ∈ (Base‘𝐺)) |
79 | 78 | ad4ant14 749 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ (♯‘𝐵) ∈
(ℤ≥‘1)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → (𝑎(+g‘𝐺)𝑏) ∈ (Base‘𝐺)) |
80 | 5 | ad4ant14 749 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ (♯‘𝐵) ∈
(ℤ≥‘1)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → (𝑎(+g‘𝐺)𝑏) = (𝑎(+g‘𝐻)𝑏)) |
81 | 45, 77, 79, 80 | seqfeq4 13772 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ (♯‘𝐵) ∈
(ℤ≥‘1)) → (seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘𝐵)) = (seq1((+g‘𝐻), (𝐹 ∘ 𝑓))‘(♯‘𝐵))) |
82 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ¬ (♯‘𝐵) ∈
(ℤ≥‘1)) → ¬ (♯‘𝐵) ∈
(ℤ≥‘1)) |
83 | | 1z 12350 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
ℤ |
84 | | seqfn 13733 |
. . . . . . . . . . . . . . . . 17
⊢ (1 ∈
ℤ → seq1((+g‘𝐺), (𝐹 ∘ 𝑓)) Fn
(ℤ≥‘1)) |
85 | | fndm 6536 |
. . . . . . . . . . . . . . . . 17
⊢
(seq1((+g‘𝐺), (𝐹 ∘ 𝑓)) Fn (ℤ≥‘1) →
dom seq1((+g‘𝐺), (𝐹 ∘ 𝑓)) =
(ℤ≥‘1)) |
86 | 83, 84, 85 | mp2b 10 |
. . . . . . . . . . . . . . . 16
⊢ dom
seq1((+g‘𝐺), (𝐹 ∘ 𝑓)) =
(ℤ≥‘1) |
87 | 86 | eleq2i 2830 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝐵)
∈ dom seq1((+g‘𝐺), (𝐹 ∘ 𝑓)) ↔ (♯‘𝐵) ∈
(ℤ≥‘1)) |
88 | 82, 87 | sylnibr 329 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ¬ (♯‘𝐵) ∈
(ℤ≥‘1)) → ¬ (♯‘𝐵) ∈ dom seq1((+g‘𝐺), (𝐹 ∘ 𝑓))) |
89 | | ndmfv 6804 |
. . . . . . . . . . . . . 14
⊢ (¬
(♯‘𝐵) ∈
dom seq1((+g‘𝐺), (𝐹 ∘ 𝑓)) → (seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘𝐵)) = ∅) |
90 | 88, 89 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ (♯‘𝐵) ∈
(ℤ≥‘1)) → (seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘𝐵)) = ∅) |
91 | | seqfn 13733 |
. . . . . . . . . . . . . . . . 17
⊢ (1 ∈
ℤ → seq1((+g‘𝐻), (𝐹 ∘ 𝑓)) Fn
(ℤ≥‘1)) |
92 | | fndm 6536 |
. . . . . . . . . . . . . . . . 17
⊢
(seq1((+g‘𝐻), (𝐹 ∘ 𝑓)) Fn (ℤ≥‘1) →
dom seq1((+g‘𝐻), (𝐹 ∘ 𝑓)) =
(ℤ≥‘1)) |
93 | 83, 91, 92 | mp2b 10 |
. . . . . . . . . . . . . . . 16
⊢ dom
seq1((+g‘𝐻), (𝐹 ∘ 𝑓)) =
(ℤ≥‘1) |
94 | 93 | eleq2i 2830 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝐵)
∈ dom seq1((+g‘𝐻), (𝐹 ∘ 𝑓)) ↔ (♯‘𝐵) ∈
(ℤ≥‘1)) |
95 | 82, 94 | sylnibr 329 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ¬ (♯‘𝐵) ∈
(ℤ≥‘1)) → ¬ (♯‘𝐵) ∈ dom seq1((+g‘𝐻), (𝐹 ∘ 𝑓))) |
96 | | ndmfv 6804 |
. . . . . . . . . . . . . 14
⊢ (¬
(♯‘𝐵) ∈
dom seq1((+g‘𝐻), (𝐹 ∘ 𝑓)) → (seq1((+g‘𝐻), (𝐹 ∘ 𝑓))‘(♯‘𝐵)) = ∅) |
97 | 95, 96 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ (♯‘𝐵) ∈
(ℤ≥‘1)) → (seq1((+g‘𝐻), (𝐹 ∘ 𝑓))‘(♯‘𝐵)) = ∅) |
98 | 90, 97 | eqtr4d 2781 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ (♯‘𝐵) ∈
(ℤ≥‘1)) → (seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘𝐵)) = (seq1((+g‘𝐻), (𝐹 ∘ 𝑓))‘(♯‘𝐵))) |
99 | 98 | adantlr 712 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ ¬
(♯‘𝐵) ∈
(ℤ≥‘1)) → (seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘𝐵)) = (seq1((+g‘𝐻), (𝐹 ∘ 𝑓))‘(♯‘𝐵))) |
100 | 81, 99 | pm2.61dan 810 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) →
(seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘𝐵)) = (seq1((+g‘𝐻), (𝐹 ∘ 𝑓))‘(♯‘𝐵))) |
101 | 44, 100 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) →
(seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘𝐴)) = (seq1((+g‘𝐻), (𝐹 ∘ 𝑓))‘(♯‘𝐵))) |
102 | 101 | eqeq2d 2749 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) → (𝑥 = (seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘𝐴)) ↔ 𝑥 = (seq1((+g‘𝐻), (𝐹 ∘ 𝑓))‘(♯‘𝐵)))) |
103 | 102 | pm5.32da 579 |
. . . . . . 7
⊢ (𝜑 → ((𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 ∧ 𝑥 = (seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘𝐴))) ↔ (𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 ∧ 𝑥 = (seq1((+g‘𝐻), (𝐹 ∘ 𝑓))‘(♯‘𝐵))))) |
104 | 52 | f1oeq2d 6712 |
. . . . . . . . 9
⊢ (𝜑 → (𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 ↔ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐴)) |
105 | 41 | f1oeq3d 6713 |
. . . . . . . . 9
⊢ (𝜑 → (𝑓:(1...(♯‘𝐵))–1-1-onto→𝐴 ↔ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) |
106 | 104, 105 | bitrd 278 |
. . . . . . . 8
⊢ (𝜑 → (𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 ↔ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) |
107 | 106 | anbi1d 630 |
. . . . . . 7
⊢ (𝜑 → ((𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 ∧ 𝑥 = (seq1((+g‘𝐻), (𝐹 ∘ 𝑓))‘(♯‘𝐵))) ↔ (𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵 ∧ 𝑥 = (seq1((+g‘𝐻), (𝐹 ∘ 𝑓))‘(♯‘𝐵))))) |
108 | 103, 107 | bitrd 278 |
. . . . . 6
⊢ (𝜑 → ((𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 ∧ 𝑥 = (seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘𝐴))) ↔ (𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵 ∧ 𝑥 = (seq1((+g‘𝐻), (𝐹 ∘ 𝑓))‘(♯‘𝐵))))) |
109 | 108 | exbidv 1924 |
. . . . 5
⊢ (𝜑 → (∃𝑓(𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 ∧ 𝑥 = (seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘𝐴))) ↔ ∃𝑓(𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵 ∧ 𝑥 = (seq1((+g‘𝐻), (𝐹 ∘ 𝑓))‘(♯‘𝐵))))) |
110 | 109 | iotabidv 6417 |
. . . 4
⊢ (𝜑 → (℩𝑥∃𝑓(𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 ∧ 𝑥 = (seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘𝐴)))) = (℩𝑥∃𝑓(𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵 ∧ 𝑥 = (seq1((+g‘𝐻), (𝐹 ∘ 𝑓))‘(♯‘𝐵))))) |
111 | 36, 110 | ifeq12d 4480 |
. . 3
⊢ (𝜑 → if(dom 𝐹 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 ∧ 𝑥 = (seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘𝐴))))) = if(dom 𝐹 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵 ∧ 𝑥 = (seq1((+g‘𝐻), (𝐹 ∘ 𝑓))‘(♯‘𝐵)))))) |
112 | 13, 15, 111 | ifbieq12d 4487 |
. 2
⊢ (𝜑 → if(ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)}, (0g‘𝐺), if(dom 𝐹 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 ∧ 𝑥 = (seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘𝐴)))))) = if(ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)}, (0g‘𝐻), if(dom 𝐹 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵 ∧ 𝑥 = (seq1((+g‘𝐻), (𝐹 ∘ 𝑓))‘(♯‘𝐵))))))) |
113 | | eqid 2738 |
. . 3
⊢
(Base‘𝐺) =
(Base‘𝐺) |
114 | | eqid 2738 |
. . 3
⊢
(0g‘𝐺) = (0g‘𝐺) |
115 | | eqid 2738 |
. . 3
⊢
(+g‘𝐺) = (+g‘𝐺) |
116 | | eqid 2738 |
. . 3
⊢ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)} = {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)} |
117 | 39 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐴 = (◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)}))) |
118 | | gsumpropd2.g |
. . 3
⊢ (𝜑 → 𝐺 ∈ 𝑊) |
119 | | gsumpropd2.f |
. . 3
⊢ (𝜑 → 𝐹 ∈ 𝑉) |
120 | | eqidd 2739 |
. . 3
⊢ (𝜑 → dom 𝐹 = dom 𝐹) |
121 | 113, 114,
115, 116, 117, 118, 119, 120 | gsumvalx 18360 |
. 2
⊢ (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g‘𝐺)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐺)𝑠) = 𝑡)}, (0g‘𝐺), if(dom 𝐹 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 ∧ 𝑥 = (seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘𝐴))))))) |
122 | | eqid 2738 |
. . 3
⊢
(Base‘𝐻) =
(Base‘𝐻) |
123 | | eqid 2738 |
. . 3
⊢
(0g‘𝐻) = (0g‘𝐻) |
124 | | eqid 2738 |
. . 3
⊢
(+g‘𝐻) = (+g‘𝐻) |
125 | | eqid 2738 |
. . 3
⊢ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)} = {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)} |
126 | 40 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐵 = (◡𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)}))) |
127 | | gsumpropd2.h |
. . 3
⊢ (𝜑 → 𝐻 ∈ 𝑋) |
128 | 122, 123,
124, 125, 126, 127, 119, 120 | gsumvalx 18360 |
. 2
⊢ (𝜑 → (𝐻 Σg 𝐹) = if(ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g‘𝐻)𝑡) = 𝑡 ∧ (𝑡(+g‘𝐻)𝑠) = 𝑡)}, (0g‘𝐻), if(dom 𝐹 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵 ∧ 𝑥 = (seq1((+g‘𝐻), (𝐹 ∘ 𝑓))‘(♯‘𝐵))))))) |
129 | 112, 121,
128 | 3eqtr4d 2788 |
1
⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹)) |