MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumpropd2lem Structured version   Visualization version   GIF version

Theorem gsumpropd2lem 18606
Description: Lemma for gsumpropd2 18607. (Contributed by Thierry Arnoux, 28-Jun-2017.)
Hypotheses
Ref Expression
gsumpropd2.f (𝜑𝐹𝑉)
gsumpropd2.g (𝜑𝐺𝑊)
gsumpropd2.h (𝜑𝐻𝑋)
gsumpropd2.b (𝜑 → (Base‘𝐺) = (Base‘𝐻))
gsumpropd2.c ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) ∈ (Base‘𝐺))
gsumpropd2.e ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) = (𝑠(+g𝐻)𝑡))
gsumpropd2.n (𝜑 → Fun 𝐹)
gsumpropd2.r (𝜑 → ran 𝐹 ⊆ (Base‘𝐺))
gsumprop2dlem.1 𝐴 = (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}))
gsumprop2dlem.2 𝐵 = (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}))
Assertion
Ref Expression
gsumpropd2lem (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
Distinct variable groups:   𝑡,𝑠,𝐹   𝐺,𝑠,𝑡   𝐻,𝑠,𝑡   𝜑,𝑠,𝑡
Allowed substitution hints:   𝐴(𝑡,𝑠)   𝐵(𝑡,𝑠)   𝑉(𝑡,𝑠)   𝑊(𝑡,𝑠)   𝑋(𝑡,𝑠)

Proof of Theorem gsumpropd2lem
Dummy variables 𝑎 𝑏 𝑓 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumpropd2.b . . . . 5 (𝜑 → (Base‘𝐺) = (Base‘𝐻))
21adantr 480 . . . . . 6 ((𝜑𝑠 ∈ (Base‘𝐺)) → (Base‘𝐺) = (Base‘𝐻))
3 gsumpropd2.e . . . . . . . . 9 ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) = (𝑠(+g𝐻)𝑡))
43eqeq1d 2731 . . . . . . . 8 ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → ((𝑠(+g𝐺)𝑡) = 𝑡 ↔ (𝑠(+g𝐻)𝑡) = 𝑡))
53oveqrspc2v 7414 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → (𝑎(+g𝐺)𝑏) = (𝑎(+g𝐻)𝑏))
65oveqrspc2v 7414 . . . . . . . . . 10 ((𝜑 ∧ (𝑡 ∈ (Base‘𝐺) ∧ 𝑠 ∈ (Base‘𝐺))) → (𝑡(+g𝐺)𝑠) = (𝑡(+g𝐻)𝑠))
76ancom2s 650 . . . . . . . . 9 ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑡(+g𝐺)𝑠) = (𝑡(+g𝐻)𝑠))
87eqeq1d 2731 . . . . . . . 8 ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → ((𝑡(+g𝐺)𝑠) = 𝑡 ↔ (𝑡(+g𝐻)𝑠) = 𝑡))
94, 8anbi12d 632 . . . . . . 7 ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡) ↔ ((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)))
109anassrs 467 . . . . . 6 (((𝜑𝑠 ∈ (Base‘𝐺)) ∧ 𝑡 ∈ (Base‘𝐺)) → (((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡) ↔ ((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)))
112, 10raleqbidva 3305 . . . . 5 ((𝜑𝑠 ∈ (Base‘𝐺)) → (∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡) ↔ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)))
121, 11rabeqbidva 3422 . . . 4 (𝜑 → {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)} = {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)})
1312sseq2d 3979 . . 3 (𝜑 → (ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)} ↔ ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}))
14 eqidd 2730 . . . 4 (𝜑 → (Base‘𝐺) = (Base‘𝐺))
1514, 1, 3grpidpropd 18589 . . 3 (𝜑 → (0g𝐺) = (0g𝐻))
16 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) → 𝑛 ∈ (ℤ𝑚))
17 gsumpropd2.r . . . . . . . . . . . . 13 (𝜑 → ran 𝐹 ⊆ (Base‘𝐺))
1817ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → ran 𝐹 ⊆ (Base‘𝐺))
19 gsumpropd2.n . . . . . . . . . . . . . 14 (𝜑 → Fun 𝐹)
2019ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → Fun 𝐹)
21 simpr 484 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → 𝑠 ∈ (𝑚...𝑛))
22 simplrr 777 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → dom 𝐹 = (𝑚...𝑛))
2321, 22eleqtrrd 2831 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → 𝑠 ∈ dom 𝐹)
24 fvelrn 7048 . . . . . . . . . . . . 13 ((Fun 𝐹𝑠 ∈ dom 𝐹) → (𝐹𝑠) ∈ ran 𝐹)
2520, 23, 24syl2anc 584 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → (𝐹𝑠) ∈ ran 𝐹)
2618, 25sseldd 3947 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → (𝐹𝑠) ∈ (Base‘𝐺))
27 gsumpropd2.c . . . . . . . . . . . 12 ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) ∈ (Base‘𝐺))
2827adantlr 715 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) ∈ (Base‘𝐺))
293adantlr 715 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) = (𝑠(+g𝐻)𝑡))
3016, 26, 28, 29seqfeq4 14016 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) → (seq𝑚((+g𝐺), 𝐹)‘𝑛) = (seq𝑚((+g𝐻), 𝐹)‘𝑛))
3130eqeq2d 2740 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) → (𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛) ↔ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛)))
3231anassrs 467 . . . . . . . 8 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ dom 𝐹 = (𝑚...𝑛)) → (𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛) ↔ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛)))
3332pm5.32da 579 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑚)) → ((dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛)) ↔ (dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
3433rexbidva 3155 . . . . . 6 (𝜑 → (∃𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
3534exbidv 1921 . . . . 5 (𝜑 → (∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛)) ↔ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
3635iotabidv 6495 . . . 4 (𝜑 → (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛))) = (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
3712difeq2d 4089 . . . . . . . . . . . . . . 15 (𝜑 → (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}) = (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}))
3837imaeq2d 6031 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})) = (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)})))
39 gsumprop2dlem.1 . . . . . . . . . . . . . 14 𝐴 = (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}))
40 gsumprop2dlem.2 . . . . . . . . . . . . . 14 𝐵 = (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}))
4138, 39, 403eqtr4g 2789 . . . . . . . . . . . . 13 (𝜑𝐴 = 𝐵)
4241fveq2d 6862 . . . . . . . . . . . 12 (𝜑 → (♯‘𝐴) = (♯‘𝐵))
4342fveq2d 6862 . . . . . . . . . . 11 (𝜑 → (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐴)) = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐵)))
4443adantr 480 . . . . . . . . . 10 ((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐴)) = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐵)))
45 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) → (♯‘𝐵) ∈ (ℤ‘1))
4617ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → ran 𝐹 ⊆ (Base‘𝐺))
47 f1ofun 6802 . . . . . . . . . . . . . . . 16 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → Fun 𝑓)
4847ad3antlr 731 . . . . . . . . . . . . . . 15 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → Fun 𝑓)
49 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → 𝑎 ∈ (1...(♯‘𝐵)))
50 f1odm 6804 . . . . . . . . . . . . . . . . . 18 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → dom 𝑓 = (1...(♯‘𝐴)))
5150ad3antlr 731 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → dom 𝑓 = (1...(♯‘𝐴)))
5242oveq2d 7403 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1...(♯‘𝐴)) = (1...(♯‘𝐵)))
5352ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → (1...(♯‘𝐴)) = (1...(♯‘𝐵)))
5451, 53eqtrd 2764 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → dom 𝑓 = (1...(♯‘𝐵)))
5549, 54eleqtrrd 2831 . . . . . . . . . . . . . . 15 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → 𝑎 ∈ dom 𝑓)
56 fvco 6959 . . . . . . . . . . . . . . 15 ((Fun 𝑓𝑎 ∈ dom 𝑓) → ((𝐹𝑓)‘𝑎) = (𝐹‘(𝑓𝑎)))
5748, 55, 56syl2anc 584 . . . . . . . . . . . . . 14 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → ((𝐹𝑓)‘𝑎) = (𝐹‘(𝑓𝑎)))
5819ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → Fun 𝐹)
59 difpreima 7037 . . . . . . . . . . . . . . . . . . . . 21 (Fun 𝐹 → (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})) = ((𝐹 “ V) ∖ (𝐹 “ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})))
6019, 59syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})) = ((𝐹 “ V) ∖ (𝐹 “ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})))
6139, 60eqtrid 2776 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 = ((𝐹 “ V) ∖ (𝐹 “ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})))
62 difss 4099 . . . . . . . . . . . . . . . . . . 19 ((𝐹 “ V) ∖ (𝐹 “ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})) ⊆ (𝐹 “ V)
6361, 62eqsstrdi 3991 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ⊆ (𝐹 “ V))
64 dfdm4 5859 . . . . . . . . . . . . . . . . . . 19 dom 𝐹 = ran 𝐹
65 dfrn4 6175 . . . . . . . . . . . . . . . . . . 19 ran 𝐹 = (𝐹 “ V)
6664, 65eqtri 2752 . . . . . . . . . . . . . . . . . 18 dom 𝐹 = (𝐹 “ V)
6763, 66sseqtrrdi 3988 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ⊆ dom 𝐹)
6867ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → 𝐴 ⊆ dom 𝐹)
69 f1of 6800 . . . . . . . . . . . . . . . . . 18 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐴))⟶𝐴)
7069ad3antlr 731 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
7149, 53eleqtrrd 2831 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → 𝑎 ∈ (1...(♯‘𝐴)))
7270, 71ffvelcdmd 7057 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → (𝑓𝑎) ∈ 𝐴)
7368, 72sseldd 3947 . . . . . . . . . . . . . . 15 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → (𝑓𝑎) ∈ dom 𝐹)
74 fvelrn 7048 . . . . . . . . . . . . . . 15 ((Fun 𝐹 ∧ (𝑓𝑎) ∈ dom 𝐹) → (𝐹‘(𝑓𝑎)) ∈ ran 𝐹)
7558, 73, 74syl2anc 584 . . . . . . . . . . . . . 14 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → (𝐹‘(𝑓𝑎)) ∈ ran 𝐹)
7657, 75eqeltrd 2828 . . . . . . . . . . . . 13 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → ((𝐹𝑓)‘𝑎) ∈ ran 𝐹)
7746, 76sseldd 3947 . . . . . . . . . . . 12 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → ((𝐹𝑓)‘𝑎) ∈ (Base‘𝐺))
7827caovclg 7581 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → (𝑎(+g𝐺)𝑏) ∈ (Base‘𝐺))
7978ad4ant14 752 . . . . . . . . . . . 12 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → (𝑎(+g𝐺)𝑏) ∈ (Base‘𝐺))
805ad4ant14 752 . . . . . . . . . . . 12 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → (𝑎(+g𝐺)𝑏) = (𝑎(+g𝐻)𝑏))
8145, 77, 79, 80seqfeq4 14016 . . . . . . . . . . 11 (((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) → (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐵)) = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵)))
82 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ (♯‘𝐵) ∈ (ℤ‘1)) → ¬ (♯‘𝐵) ∈ (ℤ‘1))
83 1z 12563 . . . . . . . . . . . . . . . . 17 1 ∈ ℤ
84 seqfn 13978 . . . . . . . . . . . . . . . . 17 (1 ∈ ℤ → seq1((+g𝐺), (𝐹𝑓)) Fn (ℤ‘1))
85 fndm 6621 . . . . . . . . . . . . . . . . 17 (seq1((+g𝐺), (𝐹𝑓)) Fn (ℤ‘1) → dom seq1((+g𝐺), (𝐹𝑓)) = (ℤ‘1))
8683, 84, 85mp2b 10 . . . . . . . . . . . . . . . 16 dom seq1((+g𝐺), (𝐹𝑓)) = (ℤ‘1)
8786eleq2i 2820 . . . . . . . . . . . . . . 15 ((♯‘𝐵) ∈ dom seq1((+g𝐺), (𝐹𝑓)) ↔ (♯‘𝐵) ∈ (ℤ‘1))
8882, 87sylnibr 329 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ (♯‘𝐵) ∈ (ℤ‘1)) → ¬ (♯‘𝐵) ∈ dom seq1((+g𝐺), (𝐹𝑓)))
89 ndmfv 6893 . . . . . . . . . . . . . 14 (¬ (♯‘𝐵) ∈ dom seq1((+g𝐺), (𝐹𝑓)) → (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐵)) = ∅)
9088, 89syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ (♯‘𝐵) ∈ (ℤ‘1)) → (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐵)) = ∅)
91 seqfn 13978 . . . . . . . . . . . . . . . . 17 (1 ∈ ℤ → seq1((+g𝐻), (𝐹𝑓)) Fn (ℤ‘1))
92 fndm 6621 . . . . . . . . . . . . . . . . 17 (seq1((+g𝐻), (𝐹𝑓)) Fn (ℤ‘1) → dom seq1((+g𝐻), (𝐹𝑓)) = (ℤ‘1))
9383, 91, 92mp2b 10 . . . . . . . . . . . . . . . 16 dom seq1((+g𝐻), (𝐹𝑓)) = (ℤ‘1)
9493eleq2i 2820 . . . . . . . . . . . . . . 15 ((♯‘𝐵) ∈ dom seq1((+g𝐻), (𝐹𝑓)) ↔ (♯‘𝐵) ∈ (ℤ‘1))
9582, 94sylnibr 329 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ (♯‘𝐵) ∈ (ℤ‘1)) → ¬ (♯‘𝐵) ∈ dom seq1((+g𝐻), (𝐹𝑓)))
96 ndmfv 6893 . . . . . . . . . . . . . 14 (¬ (♯‘𝐵) ∈ dom seq1((+g𝐻), (𝐹𝑓)) → (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵)) = ∅)
9795, 96syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ (♯‘𝐵) ∈ (ℤ‘1)) → (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵)) = ∅)
9890, 97eqtr4d 2767 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (♯‘𝐵) ∈ (ℤ‘1)) → (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐵)) = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵)))
9998adantlr 715 . . . . . . . . . . 11 (((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ ¬ (♯‘𝐵) ∈ (ℤ‘1)) → (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐵)) = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵)))
10081, 99pm2.61dan 812 . . . . . . . . . 10 ((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐵)) = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵)))
10144, 100eqtrd 2764 . . . . . . . . 9 ((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐴)) = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵)))
102101eqeq2d 2740 . . . . . . . 8 ((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐴)) ↔ 𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵))))
103102pm5.32da 579 . . . . . . 7 (𝜑 → ((𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐴))) ↔ (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵)))))
10452f1oeq2d 6796 . . . . . . . . 9 (𝜑 → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐵))–1-1-onto𝐴))
10541f1oeq3d 6797 . . . . . . . . 9 (𝜑 → (𝑓:(1...(♯‘𝐵))–1-1-onto𝐴𝑓:(1...(♯‘𝐵))–1-1-onto𝐵))
106104, 105bitrd 279 . . . . . . . 8 (𝜑 → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐵))–1-1-onto𝐵))
107106anbi1d 631 . . . . . . 7 (𝜑 → ((𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵))) ↔ (𝑓:(1...(♯‘𝐵))–1-1-onto𝐵𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵)))))
108103, 107bitrd 279 . . . . . 6 (𝜑 → ((𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐴))) ↔ (𝑓:(1...(♯‘𝐵))–1-1-onto𝐵𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵)))))
109108exbidv 1921 . . . . 5 (𝜑 → (∃𝑓(𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐴))) ↔ ∃𝑓(𝑓:(1...(♯‘𝐵))–1-1-onto𝐵𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵)))))
110109iotabidv 6495 . . . 4 (𝜑 → (℩𝑥𝑓(𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐴)))) = (℩𝑥𝑓(𝑓:(1...(♯‘𝐵))–1-1-onto𝐵𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵)))))
11136, 110ifeq12d 4510 . . 3 (𝜑 → if(dom 𝐹 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐴))))) = if(dom 𝐹 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘𝐵))–1-1-onto𝐵𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵))))))
11213, 15, 111ifbieq12d 4517 . 2 (𝜑 → if(ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}, (0g𝐺), if(dom 𝐹 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐴)))))) = if(ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}, (0g𝐻), if(dom 𝐹 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘𝐵))–1-1-onto𝐵𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵)))))))
113 eqid 2729 . . 3 (Base‘𝐺) = (Base‘𝐺)
114 eqid 2729 . . 3 (0g𝐺) = (0g𝐺)
115 eqid 2729 . . 3 (+g𝐺) = (+g𝐺)
116 eqid 2729 . . 3 {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)} = {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}
11739a1i 11 . . 3 (𝜑𝐴 = (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})))
118 gsumpropd2.g . . 3 (𝜑𝐺𝑊)
119 gsumpropd2.f . . 3 (𝜑𝐹𝑉)
120 eqidd 2730 . . 3 (𝜑 → dom 𝐹 = dom 𝐹)
121113, 114, 115, 116, 117, 118, 119, 120gsumvalx 18603 . 2 (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}, (0g𝐺), if(dom 𝐹 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐴)))))))
122 eqid 2729 . . 3 (Base‘𝐻) = (Base‘𝐻)
123 eqid 2729 . . 3 (0g𝐻) = (0g𝐻)
124 eqid 2729 . . 3 (+g𝐻) = (+g𝐻)
125 eqid 2729 . . 3 {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)} = {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}
12640a1i 11 . . 3 (𝜑𝐵 = (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)})))
127 gsumpropd2.h . . 3 (𝜑𝐻𝑋)
128122, 123, 124, 125, 126, 127, 119, 120gsumvalx 18603 . 2 (𝜑 → (𝐻 Σg 𝐹) = if(ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}, (0g𝐻), if(dom 𝐹 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘𝐵))–1-1-onto𝐵𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵)))))))
129112, 121, 1283eqtr4d 2774 1 (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  cdif 3911  wss 3914  c0 4296  ifcif 4488  ccnv 5637  dom cdm 5638  ran crn 5639  cima 5641  ccom 5642  cio 6462  Fun wfun 6505   Fn wfn 6506  wf 6507  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  1c1 11069  cz 12529  cuz 12793  ...cfz 13468  seqcseq 13966  chash 14295  Basecbs 17179  +gcplusg 17220  0gc0g 17402   Σg cgsu 17403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-seq 13967  df-0g 17404  df-gsum 17405
This theorem is referenced by:  gsumpropd2  18607
  Copyright terms: Public domain W3C validator