MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumpropd2lem Structured version   Visualization version   GIF version

Theorem gsumpropd2lem 18534
Description: Lemma for gsumpropd2 18535. (Contributed by Thierry Arnoux, 28-Jun-2017.)
Hypotheses
Ref Expression
gsumpropd2.f (𝜑𝐹𝑉)
gsumpropd2.g (𝜑𝐺𝑊)
gsumpropd2.h (𝜑𝐻𝑋)
gsumpropd2.b (𝜑 → (Base‘𝐺) = (Base‘𝐻))
gsumpropd2.c ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) ∈ (Base‘𝐺))
gsumpropd2.e ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) = (𝑠(+g𝐻)𝑡))
gsumpropd2.n (𝜑 → Fun 𝐹)
gsumpropd2.r (𝜑 → ran 𝐹 ⊆ (Base‘𝐺))
gsumprop2dlem.1 𝐴 = (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}))
gsumprop2dlem.2 𝐵 = (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}))
Assertion
Ref Expression
gsumpropd2lem (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
Distinct variable groups:   𝑡,𝑠,𝐹   𝐺,𝑠,𝑡   𝐻,𝑠,𝑡   𝜑,𝑠,𝑡
Allowed substitution hints:   𝐴(𝑡,𝑠)   𝐵(𝑡,𝑠)   𝑉(𝑡,𝑠)   𝑊(𝑡,𝑠)   𝑋(𝑡,𝑠)

Proof of Theorem gsumpropd2lem
Dummy variables 𝑎 𝑏 𝑓 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumpropd2.b . . . . 5 (𝜑 → (Base‘𝐺) = (Base‘𝐻))
21adantr 481 . . . . . 6 ((𝜑𝑠 ∈ (Base‘𝐺)) → (Base‘𝐺) = (Base‘𝐻))
3 gsumpropd2.e . . . . . . . . 9 ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) = (𝑠(+g𝐻)𝑡))
43eqeq1d 2738 . . . . . . . 8 ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → ((𝑠(+g𝐺)𝑡) = 𝑡 ↔ (𝑠(+g𝐻)𝑡) = 𝑡))
53oveqrspc2v 7384 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → (𝑎(+g𝐺)𝑏) = (𝑎(+g𝐻)𝑏))
65oveqrspc2v 7384 . . . . . . . . . 10 ((𝜑 ∧ (𝑡 ∈ (Base‘𝐺) ∧ 𝑠 ∈ (Base‘𝐺))) → (𝑡(+g𝐺)𝑠) = (𝑡(+g𝐻)𝑠))
76ancom2s 648 . . . . . . . . 9 ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑡(+g𝐺)𝑠) = (𝑡(+g𝐻)𝑠))
87eqeq1d 2738 . . . . . . . 8 ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → ((𝑡(+g𝐺)𝑠) = 𝑡 ↔ (𝑡(+g𝐻)𝑠) = 𝑡))
94, 8anbi12d 631 . . . . . . 7 ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡) ↔ ((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)))
109anassrs 468 . . . . . 6 (((𝜑𝑠 ∈ (Base‘𝐺)) ∧ 𝑡 ∈ (Base‘𝐺)) → (((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡) ↔ ((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)))
112, 10raleqbidva 3321 . . . . 5 ((𝜑𝑠 ∈ (Base‘𝐺)) → (∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡) ↔ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)))
121, 11rabeqbidva 3423 . . . 4 (𝜑 → {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)} = {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)})
1312sseq2d 3976 . . 3 (𝜑 → (ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)} ↔ ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}))
14 eqidd 2737 . . . 4 (𝜑 → (Base‘𝐺) = (Base‘𝐺))
1514, 1, 3grpidpropd 18517 . . 3 (𝜑 → (0g𝐺) = (0g𝐻))
16 simprl 769 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) → 𝑛 ∈ (ℤ𝑚))
17 gsumpropd2.r . . . . . . . . . . . . 13 (𝜑 → ran 𝐹 ⊆ (Base‘𝐺))
1817ad2antrr 724 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → ran 𝐹 ⊆ (Base‘𝐺))
19 gsumpropd2.n . . . . . . . . . . . . . 14 (𝜑 → Fun 𝐹)
2019ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → Fun 𝐹)
21 simpr 485 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → 𝑠 ∈ (𝑚...𝑛))
22 simplrr 776 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → dom 𝐹 = (𝑚...𝑛))
2321, 22eleqtrrd 2841 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → 𝑠 ∈ dom 𝐹)
24 fvelrn 7027 . . . . . . . . . . . . 13 ((Fun 𝐹𝑠 ∈ dom 𝐹) → (𝐹𝑠) ∈ ran 𝐹)
2520, 23, 24syl2anc 584 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → (𝐹𝑠) ∈ ran 𝐹)
2618, 25sseldd 3945 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → (𝐹𝑠) ∈ (Base‘𝐺))
27 gsumpropd2.c . . . . . . . . . . . 12 ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) ∈ (Base‘𝐺))
2827adantlr 713 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) ∈ (Base‘𝐺))
293adantlr 713 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) = (𝑠(+g𝐻)𝑡))
3016, 26, 28, 29seqfeq4 13957 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) → (seq𝑚((+g𝐺), 𝐹)‘𝑛) = (seq𝑚((+g𝐻), 𝐹)‘𝑛))
3130eqeq2d 2747 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) → (𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛) ↔ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛)))
3231anassrs 468 . . . . . . . 8 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ dom 𝐹 = (𝑚...𝑛)) → (𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛) ↔ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛)))
3332pm5.32da 579 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑚)) → ((dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛)) ↔ (dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
3433rexbidva 3173 . . . . . 6 (𝜑 → (∃𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
3534exbidv 1924 . . . . 5 (𝜑 → (∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛)) ↔ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
3635iotabidv 6480 . . . 4 (𝜑 → (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛))) = (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
3712difeq2d 4082 . . . . . . . . . . . . . . 15 (𝜑 → (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}) = (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}))
3837imaeq2d 6013 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})) = (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)})))
39 gsumprop2dlem.1 . . . . . . . . . . . . . 14 𝐴 = (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}))
40 gsumprop2dlem.2 . . . . . . . . . . . . . 14 𝐵 = (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}))
4138, 39, 403eqtr4g 2801 . . . . . . . . . . . . 13 (𝜑𝐴 = 𝐵)
4241fveq2d 6846 . . . . . . . . . . . 12 (𝜑 → (♯‘𝐴) = (♯‘𝐵))
4342fveq2d 6846 . . . . . . . . . . 11 (𝜑 → (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐴)) = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐵)))
4443adantr 481 . . . . . . . . . 10 ((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐴)) = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐵)))
45 simpr 485 . . . . . . . . . . . 12 (((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) → (♯‘𝐵) ∈ (ℤ‘1))
4617ad3antrrr 728 . . . . . . . . . . . . 13 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → ran 𝐹 ⊆ (Base‘𝐺))
47 f1ofun 6786 . . . . . . . . . . . . . . . 16 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → Fun 𝑓)
4847ad3antlr 729 . . . . . . . . . . . . . . 15 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → Fun 𝑓)
49 simpr 485 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → 𝑎 ∈ (1...(♯‘𝐵)))
50 f1odm 6788 . . . . . . . . . . . . . . . . . 18 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → dom 𝑓 = (1...(♯‘𝐴)))
5150ad3antlr 729 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → dom 𝑓 = (1...(♯‘𝐴)))
5242oveq2d 7373 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1...(♯‘𝐴)) = (1...(♯‘𝐵)))
5352ad3antrrr 728 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → (1...(♯‘𝐴)) = (1...(♯‘𝐵)))
5451, 53eqtrd 2776 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → dom 𝑓 = (1...(♯‘𝐵)))
5549, 54eleqtrrd 2841 . . . . . . . . . . . . . . 15 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → 𝑎 ∈ dom 𝑓)
56 fvco 6939 . . . . . . . . . . . . . . 15 ((Fun 𝑓𝑎 ∈ dom 𝑓) → ((𝐹𝑓)‘𝑎) = (𝐹‘(𝑓𝑎)))
5748, 55, 56syl2anc 584 . . . . . . . . . . . . . 14 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → ((𝐹𝑓)‘𝑎) = (𝐹‘(𝑓𝑎)))
5819ad3antrrr 728 . . . . . . . . . . . . . . 15 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → Fun 𝐹)
59 difpreima 7015 . . . . . . . . . . . . . . . . . . . . 21 (Fun 𝐹 → (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})) = ((𝐹 “ V) ∖ (𝐹 “ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})))
6019, 59syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})) = ((𝐹 “ V) ∖ (𝐹 “ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})))
6139, 60eqtrid 2788 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 = ((𝐹 “ V) ∖ (𝐹 “ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})))
62 difss 4091 . . . . . . . . . . . . . . . . . . 19 ((𝐹 “ V) ∖ (𝐹 “ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})) ⊆ (𝐹 “ V)
6361, 62eqsstrdi 3998 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ⊆ (𝐹 “ V))
64 dfdm4 5851 . . . . . . . . . . . . . . . . . . 19 dom 𝐹 = ran 𝐹
65 dfrn4 6154 . . . . . . . . . . . . . . . . . . 19 ran 𝐹 = (𝐹 “ V)
6664, 65eqtri 2764 . . . . . . . . . . . . . . . . . 18 dom 𝐹 = (𝐹 “ V)
6763, 66sseqtrrdi 3995 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ⊆ dom 𝐹)
6867ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → 𝐴 ⊆ dom 𝐹)
69 f1of 6784 . . . . . . . . . . . . . . . . . 18 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐴))⟶𝐴)
7069ad3antlr 729 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
7149, 53eleqtrrd 2841 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → 𝑎 ∈ (1...(♯‘𝐴)))
7270, 71ffvelcdmd 7036 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → (𝑓𝑎) ∈ 𝐴)
7368, 72sseldd 3945 . . . . . . . . . . . . . . 15 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → (𝑓𝑎) ∈ dom 𝐹)
74 fvelrn 7027 . . . . . . . . . . . . . . 15 ((Fun 𝐹 ∧ (𝑓𝑎) ∈ dom 𝐹) → (𝐹‘(𝑓𝑎)) ∈ ran 𝐹)
7558, 73, 74syl2anc 584 . . . . . . . . . . . . . 14 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → (𝐹‘(𝑓𝑎)) ∈ ran 𝐹)
7657, 75eqeltrd 2838 . . . . . . . . . . . . 13 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → ((𝐹𝑓)‘𝑎) ∈ ran 𝐹)
7746, 76sseldd 3945 . . . . . . . . . . . 12 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ 𝑎 ∈ (1...(♯‘𝐵))) → ((𝐹𝑓)‘𝑎) ∈ (Base‘𝐺))
7827caovclg 7546 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → (𝑎(+g𝐺)𝑏) ∈ (Base‘𝐺))
7978ad4ant14 750 . . . . . . . . . . . 12 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → (𝑎(+g𝐺)𝑏) ∈ (Base‘𝐺))
805ad4ant14 750 . . . . . . . . . . . 12 ((((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) ∧ (𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺))) → (𝑎(+g𝐺)𝑏) = (𝑎(+g𝐻)𝑏))
8145, 77, 79, 80seqfeq4 13957 . . . . . . . . . . 11 (((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ (♯‘𝐵) ∈ (ℤ‘1)) → (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐵)) = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵)))
82 simpr 485 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ (♯‘𝐵) ∈ (ℤ‘1)) → ¬ (♯‘𝐵) ∈ (ℤ‘1))
83 1z 12533 . . . . . . . . . . . . . . . . 17 1 ∈ ℤ
84 seqfn 13918 . . . . . . . . . . . . . . . . 17 (1 ∈ ℤ → seq1((+g𝐺), (𝐹𝑓)) Fn (ℤ‘1))
85 fndm 6605 . . . . . . . . . . . . . . . . 17 (seq1((+g𝐺), (𝐹𝑓)) Fn (ℤ‘1) → dom seq1((+g𝐺), (𝐹𝑓)) = (ℤ‘1))
8683, 84, 85mp2b 10 . . . . . . . . . . . . . . . 16 dom seq1((+g𝐺), (𝐹𝑓)) = (ℤ‘1)
8786eleq2i 2829 . . . . . . . . . . . . . . 15 ((♯‘𝐵) ∈ dom seq1((+g𝐺), (𝐹𝑓)) ↔ (♯‘𝐵) ∈ (ℤ‘1))
8882, 87sylnibr 328 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ (♯‘𝐵) ∈ (ℤ‘1)) → ¬ (♯‘𝐵) ∈ dom seq1((+g𝐺), (𝐹𝑓)))
89 ndmfv 6877 . . . . . . . . . . . . . 14 (¬ (♯‘𝐵) ∈ dom seq1((+g𝐺), (𝐹𝑓)) → (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐵)) = ∅)
9088, 89syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ (♯‘𝐵) ∈ (ℤ‘1)) → (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐵)) = ∅)
91 seqfn 13918 . . . . . . . . . . . . . . . . 17 (1 ∈ ℤ → seq1((+g𝐻), (𝐹𝑓)) Fn (ℤ‘1))
92 fndm 6605 . . . . . . . . . . . . . . . . 17 (seq1((+g𝐻), (𝐹𝑓)) Fn (ℤ‘1) → dom seq1((+g𝐻), (𝐹𝑓)) = (ℤ‘1))
9383, 91, 92mp2b 10 . . . . . . . . . . . . . . . 16 dom seq1((+g𝐻), (𝐹𝑓)) = (ℤ‘1)
9493eleq2i 2829 . . . . . . . . . . . . . . 15 ((♯‘𝐵) ∈ dom seq1((+g𝐻), (𝐹𝑓)) ↔ (♯‘𝐵) ∈ (ℤ‘1))
9582, 94sylnibr 328 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ (♯‘𝐵) ∈ (ℤ‘1)) → ¬ (♯‘𝐵) ∈ dom seq1((+g𝐻), (𝐹𝑓)))
96 ndmfv 6877 . . . . . . . . . . . . . 14 (¬ (♯‘𝐵) ∈ dom seq1((+g𝐻), (𝐹𝑓)) → (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵)) = ∅)
9795, 96syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ (♯‘𝐵) ∈ (ℤ‘1)) → (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵)) = ∅)
9890, 97eqtr4d 2779 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (♯‘𝐵) ∈ (ℤ‘1)) → (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐵)) = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵)))
9998adantlr 713 . . . . . . . . . . 11 (((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ ¬ (♯‘𝐵) ∈ (ℤ‘1)) → (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐵)) = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵)))
10081, 99pm2.61dan 811 . . . . . . . . . 10 ((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐵)) = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵)))
10144, 100eqtrd 2776 . . . . . . . . 9 ((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐴)) = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵)))
102101eqeq2d 2747 . . . . . . . 8 ((𝜑𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐴)) ↔ 𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵))))
103102pm5.32da 579 . . . . . . 7 (𝜑 → ((𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐴))) ↔ (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵)))))
10452f1oeq2d 6780 . . . . . . . . 9 (𝜑 → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐵))–1-1-onto𝐴))
10541f1oeq3d 6781 . . . . . . . . 9 (𝜑 → (𝑓:(1...(♯‘𝐵))–1-1-onto𝐴𝑓:(1...(♯‘𝐵))–1-1-onto𝐵))
106104, 105bitrd 278 . . . . . . . 8 (𝜑 → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐵))–1-1-onto𝐵))
107106anbi1d 630 . . . . . . 7 (𝜑 → ((𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵))) ↔ (𝑓:(1...(♯‘𝐵))–1-1-onto𝐵𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵)))))
108103, 107bitrd 278 . . . . . 6 (𝜑 → ((𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐴))) ↔ (𝑓:(1...(♯‘𝐵))–1-1-onto𝐵𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵)))))
109108exbidv 1924 . . . . 5 (𝜑 → (∃𝑓(𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐴))) ↔ ∃𝑓(𝑓:(1...(♯‘𝐵))–1-1-onto𝐵𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵)))))
110109iotabidv 6480 . . . 4 (𝜑 → (℩𝑥𝑓(𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐴)))) = (℩𝑥𝑓(𝑓:(1...(♯‘𝐵))–1-1-onto𝐵𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵)))))
11136, 110ifeq12d 4507 . . 3 (𝜑 → if(dom 𝐹 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐴))))) = if(dom 𝐹 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘𝐵))–1-1-onto𝐵𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵))))))
11213, 15, 111ifbieq12d 4514 . 2 (𝜑 → if(ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}, (0g𝐺), if(dom 𝐹 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐴)))))) = if(ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}, (0g𝐻), if(dom 𝐹 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘𝐵))–1-1-onto𝐵𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵)))))))
113 eqid 2736 . . 3 (Base‘𝐺) = (Base‘𝐺)
114 eqid 2736 . . 3 (0g𝐺) = (0g𝐺)
115 eqid 2736 . . 3 (+g𝐺) = (+g𝐺)
116 eqid 2736 . . 3 {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)} = {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}
11739a1i 11 . . 3 (𝜑𝐴 = (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)})))
118 gsumpropd2.g . . 3 (𝜑𝐺𝑊)
119 gsumpropd2.f . . 3 (𝜑𝐹𝑉)
120 eqidd 2737 . . 3 (𝜑 → dom 𝐹 = dom 𝐹)
121113, 114, 115, 116, 117, 118, 119, 120gsumvalx 18531 . 2 (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐺) ∣ ∀𝑡 ∈ (Base‘𝐺)((𝑠(+g𝐺)𝑡) = 𝑡 ∧ (𝑡(+g𝐺)𝑠) = 𝑡)}, (0g𝐺), if(dom 𝐹 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑥 = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘𝐴)))))))
122 eqid 2736 . . 3 (Base‘𝐻) = (Base‘𝐻)
123 eqid 2736 . . 3 (0g𝐻) = (0g𝐻)
124 eqid 2736 . . 3 (+g𝐻) = (+g𝐻)
125 eqid 2736 . . 3 {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)} = {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}
12640a1i 11 . . 3 (𝜑𝐵 = (𝐹 “ (V ∖ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)})))
127 gsumpropd2.h . . 3 (𝜑𝐻𝑋)
128122, 123, 124, 125, 126, 127, 119, 120gsumvalx 18531 . 2 (𝜑 → (𝐻 Σg 𝐹) = if(ran 𝐹 ⊆ {𝑠 ∈ (Base‘𝐻) ∣ ∀𝑡 ∈ (Base‘𝐻)((𝑠(+g𝐻)𝑡) = 𝑡 ∧ (𝑡(+g𝐻)𝑠) = 𝑡)}, (0g𝐻), if(dom 𝐹 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘𝐵))–1-1-onto𝐵𝑥 = (seq1((+g𝐻), (𝐹𝑓))‘(♯‘𝐵)))))))
129112, 121, 1283eqtr4d 2786 1 (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  wral 3064  wrex 3073  {crab 3407  Vcvv 3445  cdif 3907  wss 3910  c0 4282  ifcif 4486  ccnv 5632  dom cdm 5633  ran crn 5634  cima 5636  ccom 5637  cio 6446  Fun wfun 6490   Fn wfn 6491  wf 6492  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  1c1 11052  cz 12499  cuz 12763  ...cfz 13424  seqcseq 13906  chash 14230  Basecbs 17083  +gcplusg 17133  0gc0g 17321   Σg cgsu 17322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-seq 13907  df-0g 17323  df-gsum 17324
This theorem is referenced by:  gsumpropd2  18535
  Copyright terms: Public domain W3C validator