MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elntg Structured version   Visualization version   GIF version

Theorem elntg 27933
Description: The line definition in the Tarski structure for the Euclidean geometry. (Contributed by Thierry Arnoux, 7-Apr-2019.)
Hypotheses
Ref Expression
elntg.1 𝑃 = (Base‘(EEG‘𝑁))
elntg.2 𝐼 = (Itv‘(EEG‘𝑁))
Assertion
Ref Expression
elntg (𝑁 ∈ ℕ → (LineG‘(EEG‘𝑁)) = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑁   𝑧,𝑃
Allowed substitution hints:   𝑃(𝑥,𝑦)   𝐼(𝑥,𝑦,𝑧)

Proof of Theorem elntg
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 lngid 27382 . . 3 LineG = Slot (LineG‘ndx)
2 fvex 6855 . . . 4 (EEG‘𝑁) ∈ V
32a1i 11 . . 3 (𝑁 ∈ ℕ → (EEG‘𝑁) ∈ V)
4 eengstr 27929 . . . . 5 (𝑁 ∈ ℕ → (EEG‘𝑁) Struct ⟨1, 17⟩)
5 structn0fun 17023 . . . . 5 ((EEG‘𝑁) Struct ⟨1, 17⟩ → Fun ((EEG‘𝑁) ∖ {∅}))
64, 5syl 17 . . . 4 (𝑁 ∈ ℕ → Fun ((EEG‘𝑁) ∖ {∅}))
7 structcnvcnv 17025 . . . . . 6 ((EEG‘𝑁) Struct ⟨1, 17⟩ → (EEG‘𝑁) = ((EEG‘𝑁) ∖ {∅}))
84, 7syl 17 . . . . 5 (𝑁 ∈ ℕ → (EEG‘𝑁) = ((EEG‘𝑁) ∖ {∅}))
98funeqd 6523 . . . 4 (𝑁 ∈ ℕ → (Fun (EEG‘𝑁) ↔ Fun ((EEG‘𝑁) ∖ {∅})))
106, 9mpbird 256 . . 3 (𝑁 ∈ ℕ → Fun (EEG‘𝑁))
11 opex 5421 . . . . . 6 ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩ ∈ V
1211prid2 4724 . . . . 5 ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩ ∈ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩}
13 elun2 4137 . . . . 5 (⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩ ∈ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩} → ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩ ∈ ({⟨(Base‘ndx), (𝔼‘𝑁)⟩, ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩} ∪ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩}))
1412, 13ax-mp 5 . . . 4 ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩ ∈ ({⟨(Base‘ndx), (𝔼‘𝑁)⟩, ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩} ∪ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩})
15 eengv 27928 . . . 4 (𝑁 ∈ ℕ → (EEG‘𝑁) = ({⟨(Base‘ndx), (𝔼‘𝑁)⟩, ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ Σ𝑖 ∈ (1...𝑁)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩} ∪ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ (𝔼‘𝑁) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩}))
1614, 15eleqtrrid 2845 . . 3 (𝑁 ∈ ℕ → ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩ ∈ (EEG‘𝑁))
17 fvex 6855 . . . . 5 (𝔼‘𝑁) ∈ V
1817difexi 5285 . . . . 5 ((𝔼‘𝑁) ∖ {𝑥}) ∈ V
1917, 18mpoex 8012 . . . 4 (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)}) ∈ V
2019a1i 11 . . 3 (𝑁 ∈ ℕ → (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)}) ∈ V)
211, 3, 10, 16, 20strfv2d 17074 . 2 (𝑁 ∈ ℕ → (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)}) = (LineG‘(EEG‘𝑁)))
22 eengbas 27930 . . . 4 (𝑁 ∈ ℕ → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
23 elntg.1 . . . 4 𝑃 = (Base‘(EEG‘𝑁))
2422, 23eqtr4di 2794 . . 3 (𝑁 ∈ ℕ → (𝔼‘𝑁) = 𝑃)
2524difeq1d 4081 . . . 4 (𝑁 ∈ ℕ → ((𝔼‘𝑁) ∖ {𝑥}) = (𝑃 ∖ {𝑥}))
2625adantr 481 . . 3 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝔼‘𝑁) ∖ {𝑥}) = (𝑃 ∖ {𝑥}))
2724adantr 481 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))) → (𝔼‘𝑁) = 𝑃)
28 simpll 765 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
29 elntg.2 . . . . . 6 𝐼 = (Itv‘(EEG‘𝑁))
30 simplrl 775 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑥 ∈ (𝔼‘𝑁))
3128, 24syl 17 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → (𝔼‘𝑁) = 𝑃)
3230, 31eleqtrd 2840 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑥𝑃)
33 simplrr 776 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))
3433eldifad 3922 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑦 ∈ (𝔼‘𝑁))
3534, 31eleqtrd 2840 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑦𝑃)
36 simpr 485 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑧 ∈ (𝔼‘𝑁))
3736, 31eleqtrd 2840 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → 𝑧𝑃)
3828, 23, 29, 32, 35, 37ebtwntg 27931 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → (𝑧 Btwn ⟨𝑥, 𝑦⟩ ↔ 𝑧 ∈ (𝑥𝐼𝑦)))
3928, 23, 29, 37, 35, 32ebtwntg 27931 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → (𝑥 Btwn ⟨𝑧, 𝑦⟩ ↔ 𝑥 ∈ (𝑧𝐼𝑦)))
4028, 23, 29, 32, 37, 35ebtwntg 27931 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → (𝑦 Btwn ⟨𝑥, 𝑧⟩ ↔ 𝑦 ∈ (𝑥𝐼𝑧)))
4138, 39, 403orbi123d 1435 . . . 4 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))) ∧ 𝑧 ∈ (𝔼‘𝑁)) → ((𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩) ↔ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
4227, 41rabeqbidva 3423 . . 3 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}))) → {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)} = {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})
4324, 26, 42mpoeq123dva 7431 . 2 (𝑁 ∈ ℕ → (𝑥 ∈ (𝔼‘𝑁), 𝑦 ∈ ((𝔼‘𝑁) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑁) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)}) = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
4421, 43eqtr3d 2778 1 (𝑁 ∈ ℕ → (LineG‘(EEG‘𝑁)) = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3o 1086   = wceq 1541  wcel 2106  {crab 3407  Vcvv 3445  cdif 3907  cun 3908  c0 4282  {csn 4586  {cpr 4588  cop 4592   class class class wbr 5105  ccnv 5632  Fun wfun 6490  cfv 6496  (class class class)co 7357  cmpo 7359  1c1 11052  cmin 11385  cn 12153  2c2 12208  7c7 12213  cdc 12618  ...cfz 13424  cexp 13967  Σcsu 15570   Struct cstr 17018  ndxcnx 17065  Basecbs 17083  distcds 17142  Itvcitv 27375  LineGclng 27376  𝔼cee 27837   Btwn cbtwn 27838  EEGceeng 27926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-seq 13907  df-sum 15571  df-struct 17019  df-slot 17054  df-ndx 17066  df-base 17084  df-ds 17155  df-itv 27377  df-lng 27378  df-eeng 27927
This theorem is referenced by:  elntg2  27934  eengtrkg  27935
  Copyright terms: Public domain W3C validator