| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabeqdv | Structured version Visualization version GIF version | ||
| Description: Equality of restricted class abstractions. Deduction form of rabeq 3423. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| rabeqdv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| rabeqdv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqdv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | rabeq 3423 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 {crab 3408 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 |
| This theorem is referenced by: rabeqbidvaOLD 3426 rabsnif 4690 fvmptrabfv 7003 suppvalfng 8149 suppvalfn 8150 suppsnop 8160 fnsuppres 8173 pmvalg 8813 cantnffval 9623 hashbc 14425 elovmpowrd 14530 dfphi2 16751 mrisval 17598 coafval 18033 mndpsuppss 18699 pmtrfval 19387 dprdval 19942 rrgval 20613 lspfval 20886 lsppropd 20932 dsmmbas2 21653 frlmbas 21671 aspval 21789 mvrfval 21897 mhpfval 22032 psdffval 22051 clsfval 22919 ordtrest 23096 ordtrest2lem 23097 ordtrest2 23098 xkoval 23481 xkopt 23549 tsmsval2 24024 cncfval 24788 isphtpy 24887 cfilfval 25171 iscmet 25191 leftval 27778 rightval 27779 ttgval 28809 eengv 28913 isupgr 29018 upgrop 29028 isumgr 29029 upgrun 29052 umgrun 29054 isuspgr 29086 isusgr 29087 isuspgrop 29095 isusgrop 29096 isausgr 29098 ausgrusgrb 29099 usgrstrrepe 29169 lfuhgr1v0e 29188 usgrexi 29375 cusgrsize 29389 1loopgrvd2 29438 wwlksn 29774 wspthsn 29785 iswwlksnon 29790 iswspthsnon 29793 clwwlknonmpo 30025 clwwlknon 30026 clwwlk0on0 30028 fxpgaval 33131 rmfsupp2 33196 idlsrgval 33481 rspectopn 33864 zar0ring 33875 ordtprsval 33915 snmlfval 35324 mpstval 35529 pclfvalN 39890 docaffvalN 41122 docafvalN 41123 isprimroot 42088 dvnprodlem1 45951 etransclem11 46250 issmflem 46732 issmfd 46740 cnfsmf 46745 issmflelem 46749 issmfgtlem 46760 issmfgt 46761 issmfled 46762 issmfgtd 46766 issmfgelem 46774 fvmptrabdm 47298 prprspr2 47523 stgrusgra 47962 gpgusgra 48052 assintopmap 48198 dmatALTval 48393 rrxsphere 48741 initopropdlem 49233 termopropdlem 49234 |
| Copyright terms: Public domain | W3C validator |