Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabeqdv | Structured version Visualization version GIF version |
Description: Equality of restricted class abstractions. Deduction form of rabeq 3418. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
rabeqdv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
rabeqdv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeqdv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | rabeq 3418 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 {crab 3068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 |
This theorem is referenced by: rabeqbidv 3420 rabeqbidva 3421 rabsnif 4659 fvmptrabfv 6906 suppvalfng 7984 suppvalfn 7985 suppsnop 7994 fnsuppres 8007 pmvalg 8626 cantnffval 9421 hashbc 14165 elovmpowrd 14261 dfphi2 16475 mrisval 17339 coafval 17779 pmtrfval 19058 dprdval 19606 lspfval 20235 lsppropd 20280 rrgval 20558 dsmmbas2 20944 frlmbas 20962 aspval 21077 mvrfval 21189 mhpfval 21329 clsfval 22176 ordtrest 22353 ordtrest2lem 22354 ordtrest2 22355 xkoval 22738 xkopt 22806 tsmsval2 23281 cncfval 24051 isphtpy 24144 cfilfval 24428 iscmet 24448 ttgval 27236 ttgvalOLD 27237 eengv 27347 isupgr 27454 upgrop 27464 isumgr 27465 upgrun 27488 umgrun 27490 isuspgr 27522 isusgr 27523 isuspgrop 27531 isusgrop 27532 isausgr 27534 ausgrusgrb 27535 usgrstrrepe 27602 lfuhgr1v0e 27621 usgrexmpl 27630 usgrexi 27808 cusgrsize 27821 1loopgrvd2 27870 wwlksn 28202 wspthsn 28213 iswwlksnon 28218 iswspthsnon 28221 clwwlknonmpo 28453 clwwlknon 28454 clwwlk0on0 28456 rmfsupp2 31492 idlsrgval 31648 rspectopn 31817 zar0ring 31828 ordtprsval 31868 snmlfval 33292 mpstval 33497 leftval 34047 rightval 34048 pclfvalN 37903 docaffvalN 39135 docafvalN 39136 etransclem11 43786 issmflem 44263 issmfd 44271 cnfsmf 44276 issmflelem 44280 issmfgtlem 44291 issmfgt 44292 issmfled 44293 issmfgtd 44296 issmfgelem 44304 fvmptrabdm 44785 prprspr2 44970 assintopmap 45400 mndpsuppss 45707 dmatALTval 45741 rrxsphere 46094 |
Copyright terms: Public domain | W3C validator |