| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabeqdv | Structured version Visualization version GIF version | ||
| Description: Equality of restricted class abstractions. Deduction form of rabeq 3417. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| rabeqdv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| rabeqdv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqdv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | rabeq 3417 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 {crab 3402 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 |
| This theorem is referenced by: rabeqbidvaOLD 3420 rabsnif 4683 fvmptrabfv 6982 suppvalfng 8123 suppvalfn 8124 suppsnop 8134 fnsuppres 8147 pmvalg 8787 cantnffval 9592 hashbc 14394 elovmpowrd 14499 dfphi2 16720 mrisval 17571 coafval 18006 mndpsuppss 18674 pmtrfval 19364 dprdval 19919 rrgval 20617 lspfval 20911 lsppropd 20957 dsmmbas2 21679 frlmbas 21697 aspval 21815 mvrfval 21923 mhpfval 22058 psdffval 22077 clsfval 22945 ordtrest 23122 ordtrest2lem 23123 ordtrest2 23124 xkoval 23507 xkopt 23575 tsmsval2 24050 cncfval 24814 isphtpy 24913 cfilfval 25197 iscmet 25217 leftval 27808 rightval 27809 ttgval 28855 eengv 28959 isupgr 29064 upgrop 29074 isumgr 29075 upgrun 29098 umgrun 29100 isuspgr 29132 isusgr 29133 isuspgrop 29141 isusgrop 29142 isausgr 29144 ausgrusgrb 29145 usgrstrrepe 29215 lfuhgr1v0e 29234 usgrexi 29421 cusgrsize 29435 1loopgrvd2 29484 wwlksn 29817 wspthsn 29828 iswwlksnon 29833 iswspthsnon 29836 clwwlknonmpo 30068 clwwlknon 30069 clwwlk0on0 30071 fxpgaval 33139 rmfsupp2 33205 idlsrgval 33467 rspectopn 33850 zar0ring 33861 ordtprsval 33901 snmlfval 35310 mpstval 35515 pclfvalN 39876 docaffvalN 41108 docafvalN 41109 isprimroot 42074 dvnprodlem1 45937 etransclem11 46236 issmflem 46718 issmfd 46726 cnfsmf 46731 issmflelem 46735 issmfgtlem 46746 issmfgt 46747 issmfled 46748 issmfgtd 46752 issmfgelem 46760 fvmptrabdm 47287 prprspr2 47512 stgrusgra 47951 gpgusgra 48041 assintopmap 48187 dmatALTval 48382 rrxsphere 48730 initopropdlem 49222 termopropdlem 49223 |
| Copyright terms: Public domain | W3C validator |