| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabeqdv | Structured version Visualization version GIF version | ||
| Description: Equality of restricted class abstractions. Deduction form of rabeq 3417. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| rabeqdv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| rabeqdv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqdv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | rabeq 3417 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 {crab 3402 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 |
| This theorem is referenced by: rabeqbidvaOLD 3420 rabsnif 4683 fvmptrabfv 6982 suppvalfng 8123 suppvalfn 8124 suppsnop 8134 fnsuppres 8147 pmvalg 8787 cantnffval 9594 hashbc 14396 elovmpowrd 14501 dfphi2 16721 mrisval 17572 coafval 18007 mndpsuppss 18675 pmtrfval 19365 dprdval 19920 rrgval 20618 lspfval 20912 lsppropd 20958 dsmmbas2 21680 frlmbas 21698 aspval 21816 mvrfval 21924 mhpfval 22059 psdffval 22078 clsfval 22946 ordtrest 23123 ordtrest2lem 23124 ordtrest2 23125 xkoval 23508 xkopt 23576 tsmsval2 24051 cncfval 24815 isphtpy 24914 cfilfval 25198 iscmet 25218 leftval 27809 rightval 27810 ttgval 28856 eengv 28960 isupgr 29065 upgrop 29075 isumgr 29076 upgrun 29099 umgrun 29101 isuspgr 29133 isusgr 29134 isuspgrop 29142 isusgrop 29143 isausgr 29145 ausgrusgrb 29146 usgrstrrepe 29216 lfuhgr1v0e 29235 usgrexi 29422 cusgrsize 29436 1loopgrvd2 29485 wwlksn 29818 wspthsn 29829 iswwlksnon 29834 iswspthsnon 29837 clwwlknonmpo 30069 clwwlknon 30070 clwwlk0on0 30072 fxpgaval 33140 rmfsupp2 33206 idlsrgval 33468 rspectopn 33851 zar0ring 33862 ordtprsval 33902 snmlfval 35311 mpstval 35516 pclfvalN 39877 docaffvalN 41109 docafvalN 41110 isprimroot 42075 dvnprodlem1 45938 etransclem11 46237 issmflem 46719 issmfd 46727 cnfsmf 46732 issmflelem 46736 issmfgtlem 46747 issmfgt 46748 issmfled 46749 issmfgtd 46753 issmfgelem 46761 fvmptrabdm 47288 prprspr2 47513 stgrusgra 47952 gpgusgra 48042 assintopmap 48188 dmatALTval 48383 rrxsphere 48731 initopropdlem 49223 termopropdlem 49224 |
| Copyright terms: Public domain | W3C validator |