![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabeqdv | Structured version Visualization version GIF version |
Description: Equality of restricted class abstractions. Deduction form of rabeq 3458. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
rabeqdv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
rabeqdv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeqdv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | rabeq 3458 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 {crab 3443 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 |
This theorem is referenced by: rabeqbidvaOLD 3461 rabsnif 4748 fvmptrabfv 7061 suppvalfng 8208 suppvalfn 8209 suppsnop 8219 fnsuppres 8232 pmvalg 8895 cantnffval 9732 hashbc 14502 elovmpowrd 14606 dfphi2 16821 mrisval 17688 coafval 18131 pmtrfval 19492 dprdval 20047 rrgval 20719 lspfval 20994 lsppropd 21040 dsmmbas2 21780 frlmbas 21798 aspval 21916 mvrfval 22024 mhpfval 22165 psdffval 22184 clsfval 23054 ordtrest 23231 ordtrest2lem 23232 ordtrest2 23233 xkoval 23616 xkopt 23684 tsmsval2 24159 cncfval 24933 isphtpy 25032 cfilfval 25317 iscmet 25337 leftval 27920 rightval 27921 ttgval 28901 ttgvalOLD 28902 eengv 29012 isupgr 29119 upgrop 29129 isumgr 29130 upgrun 29153 umgrun 29155 isuspgr 29187 isusgr 29188 isuspgrop 29196 isusgrop 29197 isausgr 29199 ausgrusgrb 29200 usgrstrrepe 29270 lfuhgr1v0e 29289 usgrexi 29476 cusgrsize 29490 1loopgrvd2 29539 wwlksn 29870 wspthsn 29881 iswwlksnon 29886 iswspthsnon 29889 clwwlknonmpo 30121 clwwlknon 30122 clwwlk0on0 30124 rmfsupp2 33218 idlsrgval 33496 rspectopn 33813 zar0ring 33824 ordtprsval 33864 snmlfval 35298 mpstval 35503 pclfvalN 39846 docaffvalN 41078 docafvalN 41079 isprimroot 42050 etransclem11 46166 issmflem 46648 issmfd 46656 cnfsmf 46661 issmflelem 46665 issmfgtlem 46676 issmfgt 46677 issmfled 46678 issmfgtd 46682 issmfgelem 46690 fvmptrabdm 47208 prprspr2 47392 assintopmap 47929 mndpsuppss 48096 dmatALTval 48129 rrxsphere 48482 |
Copyright terms: Public domain | W3C validator |