| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabeqdv | Structured version Visualization version GIF version | ||
| Description: Equality of restricted class abstractions. Deduction form of rabeq 3430. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| rabeqdv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| rabeqdv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqdv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | rabeq 3430 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 {crab 3415 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 |
| This theorem is referenced by: rabeqbidvaOLD 3433 rabsnif 4699 fvmptrabfv 7018 suppvalfng 8166 suppvalfn 8167 suppsnop 8177 fnsuppres 8190 pmvalg 8851 cantnffval 9677 hashbc 14471 elovmpowrd 14576 dfphi2 16793 mrisval 17642 coafval 18077 mndpsuppss 18743 pmtrfval 19431 dprdval 19986 rrgval 20657 lspfval 20930 lsppropd 20976 dsmmbas2 21697 frlmbas 21715 aspval 21833 mvrfval 21941 mhpfval 22076 psdffval 22095 clsfval 22963 ordtrest 23140 ordtrest2lem 23141 ordtrest2 23142 xkoval 23525 xkopt 23593 tsmsval2 24068 cncfval 24832 isphtpy 24931 cfilfval 25216 iscmet 25236 leftval 27823 rightval 27824 ttgval 28854 eengv 28958 isupgr 29063 upgrop 29073 isumgr 29074 upgrun 29097 umgrun 29099 isuspgr 29131 isusgr 29132 isuspgrop 29140 isusgrop 29141 isausgr 29143 ausgrusgrb 29144 usgrstrrepe 29214 lfuhgr1v0e 29233 usgrexi 29420 cusgrsize 29434 1loopgrvd2 29483 wwlksn 29819 wspthsn 29830 iswwlksnon 29835 iswspthsnon 29838 clwwlknonmpo 30070 clwwlknon 30071 clwwlk0on0 30073 rmfsupp2 33233 idlsrgval 33518 rspectopn 33898 zar0ring 33909 ordtprsval 33949 snmlfval 35352 mpstval 35557 pclfvalN 39908 docaffvalN 41140 docafvalN 41141 isprimroot 42106 dvnprodlem1 45975 etransclem11 46274 issmflem 46756 issmfd 46764 cnfsmf 46769 issmflelem 46773 issmfgtlem 46784 issmfgt 46785 issmfled 46786 issmfgtd 46790 issmfgelem 46798 fvmptrabdm 47322 prprspr2 47532 stgrusgra 47971 gpgusgra 48061 assintopmap 48181 dmatALTval 48376 rrxsphere 48728 initopropdlem 49157 termopropdlem 49158 |
| Copyright terms: Public domain | W3C validator |