| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabeqdv | Structured version Visualization version GIF version | ||
| Description: Equality of restricted class abstractions. Deduction form of rabeq 3428. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| rabeqdv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| rabeqdv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqdv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | rabeq 3428 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 {crab 3413 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3414 |
| This theorem is referenced by: rabeqbidvaOLD 3431 rabsnif 4696 fvmptrabfv 7014 suppvalfng 8160 suppvalfn 8161 suppsnop 8171 fnsuppres 8184 pmvalg 8845 cantnffval 9669 hashbc 14459 elovmpowrd 14563 dfphi2 16778 mrisval 17627 coafval 18062 mndpsuppss 18728 pmtrfval 19416 dprdval 19971 rrgval 20642 lspfval 20915 lsppropd 20961 dsmmbas2 21682 frlmbas 21700 aspval 21818 mvrfval 21926 mhpfval 22061 psdffval 22080 clsfval 22948 ordtrest 23125 ordtrest2lem 23126 ordtrest2 23127 xkoval 23510 xkopt 23578 tsmsval2 24053 cncfval 24817 isphtpy 24916 cfilfval 25201 iscmet 25221 leftval 27805 rightval 27806 ttgval 28786 eengv 28890 isupgr 28995 upgrop 29005 isumgr 29006 upgrun 29029 umgrun 29031 isuspgr 29063 isusgr 29064 isuspgrop 29072 isusgrop 29073 isausgr 29075 ausgrusgrb 29076 usgrstrrepe 29146 lfuhgr1v0e 29165 usgrexi 29352 cusgrsize 29366 1loopgrvd2 29415 wwlksn 29751 wspthsn 29762 iswwlksnon 29767 iswspthsnon 29770 clwwlknonmpo 30002 clwwlknon 30003 clwwlk0on0 30005 rmfsupp2 33151 idlsrgval 33436 rspectopn 33806 zar0ring 33817 ordtprsval 33857 snmlfval 35273 mpstval 35478 pclfvalN 39829 docaffvalN 41061 docafvalN 41062 isprimroot 42028 dvnprodlem1 45905 etransclem11 46204 issmflem 46686 issmfd 46694 cnfsmf 46699 issmflelem 46703 issmfgtlem 46714 issmfgt 46715 issmfled 46716 issmfgtd 46720 issmfgelem 46728 fvmptrabdm 47250 prprspr2 47450 stgrusgra 47871 gpgusgra 47957 assintopmap 48067 dmatALTval 48262 rrxsphere 48614 initopropdlem 48963 termopropdlem 48964 |
| Copyright terms: Public domain | W3C validator |