![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabeqdv | Structured version Visualization version GIF version |
Description: Equality of restricted class abstractions. Deduction form of rabeq 3447. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
rabeqdv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
rabeqdv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeqdv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | rabeq 3447 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 {crab 3432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 |
This theorem is referenced by: rabeqbidvaOLD 3450 rabsnif 4727 fvmptrabfv 7047 suppvalfng 8190 suppvalfn 8191 suppsnop 8201 fnsuppres 8214 pmvalg 8875 cantnffval 9700 hashbc 14488 elovmpowrd 14592 dfphi2 16807 mrisval 17674 coafval 18117 mndpsuppss 18790 pmtrfval 19482 dprdval 20037 rrgval 20713 lspfval 20988 lsppropd 21034 dsmmbas2 21774 frlmbas 21792 aspval 21910 mvrfval 22018 mhpfval 22159 psdffval 22178 clsfval 23048 ordtrest 23225 ordtrest2lem 23226 ordtrest2 23227 xkoval 23610 xkopt 23678 tsmsval2 24153 cncfval 24927 isphtpy 25026 cfilfval 25311 iscmet 25331 leftval 27916 rightval 27917 ttgval 28897 ttgvalOLD 28898 eengv 29008 isupgr 29115 upgrop 29125 isumgr 29126 upgrun 29149 umgrun 29151 isuspgr 29183 isusgr 29184 isuspgrop 29192 isusgrop 29193 isausgr 29195 ausgrusgrb 29196 usgrstrrepe 29266 lfuhgr1v0e 29285 usgrexi 29472 cusgrsize 29486 1loopgrvd2 29535 wwlksn 29866 wspthsn 29877 iswwlksnon 29882 iswspthsnon 29885 clwwlknonmpo 30117 clwwlknon 30118 clwwlk0on0 30120 rmfsupp2 33227 idlsrgval 33510 rspectopn 33827 zar0ring 33838 ordtprsval 33878 snmlfval 35314 mpstval 35519 pclfvalN 39871 docaffvalN 41103 docafvalN 41104 isprimroot 42074 dvnprodlem1 45901 etransclem11 46200 issmflem 46682 issmfd 46690 cnfsmf 46695 issmflelem 46699 issmfgtlem 46710 issmfgt 46711 issmfled 46712 issmfgtd 46716 issmfgelem 46724 fvmptrabdm 47242 prprspr2 47442 stgrusgra 47861 gpgusgra 47946 assintopmap 48049 dmatALTval 48245 rrxsphere 48597 |
Copyright terms: Public domain | W3C validator |