| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabeqdv | Structured version Visualization version GIF version | ||
| Description: Equality of restricted class abstractions. Deduction form of rabeq 3409. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| rabeqdv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| rabeqdv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqdv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | rabeq 3409 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 {crab 3394 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 |
| This theorem is referenced by: rabeqbidvaOLD 3412 rabsnif 4675 fvmptrabfv 6962 suppvalfng 8100 suppvalfn 8101 suppsnop 8111 fnsuppres 8124 pmvalg 8764 cantnffval 9559 hashbc 14360 elovmpowrd 14465 dfphi2 16685 mrisval 17536 coafval 17971 mndpsuppss 18639 pmtrfval 19329 dprdval 19884 rrgval 20582 lspfval 20876 lsppropd 20922 dsmmbas2 21644 frlmbas 21662 aspval 21780 mvrfval 21888 mhpfval 22023 psdffval 22042 clsfval 22910 ordtrest 23087 ordtrest2lem 23088 ordtrest2 23089 xkoval 23472 xkopt 23540 tsmsval2 24015 cncfval 24779 isphtpy 24878 cfilfval 25162 iscmet 25182 leftval 27775 rightval 27776 ttgval 28824 eengv 28928 isupgr 29033 upgrop 29043 isumgr 29044 upgrun 29067 umgrun 29069 isuspgr 29101 isusgr 29102 isuspgrop 29110 isusgrop 29111 isausgr 29113 ausgrusgrb 29114 usgrstrrepe 29184 lfuhgr1v0e 29203 usgrexi 29390 cusgrsize 29404 1loopgrvd2 29453 wwlksn 29786 wspthsn 29797 iswwlksnon 29802 iswspthsnon 29805 clwwlknonmpo 30037 clwwlknon 30038 clwwlk0on0 30040 fxpgaval 33118 rmfsupp2 33187 idlsrgval 33449 splyval 33561 rspectopn 33850 zar0ring 33861 ordtprsval 33901 snmlfval 35323 mpstval 35528 pclfvalN 39888 docaffvalN 41120 docafvalN 41121 isprimroot 42086 dvnprodlem1 45947 etransclem11 46246 issmflem 46728 issmfd 46736 cnfsmf 46741 issmflelem 46745 issmfgtlem 46756 issmfgt 46757 issmfled 46758 issmfgtd 46762 issmfgelem 46770 fvmptrabdm 47297 prprspr2 47522 stgrusgra 47963 gpgusgra 48061 assintopmap 48210 dmatALTval 48405 rrxsphere 48753 initopropdlem 49245 termopropdlem 49246 |
| Copyright terms: Public domain | W3C validator |