Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabeqdv | Structured version Visualization version GIF version |
Description: Equality of restricted class abstractions. Deduction form of rabeq 3416. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
rabeqdv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
rabeqdv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeqdv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | rabeq 3416 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 {crab 3069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 |
This theorem is referenced by: rabeqbidv 3418 rabeqbidva 3419 rabsnif 4664 fvmptrabfv 6900 suppvalfng 7968 suppvalfn 7969 suppsnop 7978 fnsuppres 7991 pmvalg 8600 cantnffval 9382 hashbc 14146 elovmpowrd 14242 dfphi2 16456 mrisval 17320 coafval 17760 pmtrfval 19039 dprdval 19587 lspfval 20216 lsppropd 20261 rrgval 20539 dsmmbas2 20925 frlmbas 20943 aspval 21058 mvrfval 21170 mhpfval 21310 clsfval 22157 ordtrest 22334 ordtrest2lem 22335 ordtrest2 22336 xkoval 22719 xkopt 22787 tsmsval2 23262 cncfval 24032 isphtpy 24125 cfilfval 24409 iscmet 24429 ttgval 27217 ttgvalOLD 27218 eengv 27328 isupgr 27435 upgrop 27445 isumgr 27446 upgrun 27469 umgrun 27471 isuspgr 27503 isusgr 27504 isuspgrop 27512 isusgrop 27513 isausgr 27515 ausgrusgrb 27516 usgrstrrepe 27583 lfuhgr1v0e 27602 usgrexmpl 27611 usgrexi 27789 cusgrsize 27802 1loopgrvd2 27851 wwlksn 28181 wspthsn 28192 iswwlksnon 28197 iswspthsnon 28200 clwwlknonmpo 28432 clwwlknon 28433 clwwlk0on0 28435 rmfsupp2 31471 idlsrgval 31627 rspectopn 31796 zar0ring 31807 ordtprsval 31847 snmlfval 33271 mpstval 33476 leftval 34026 rightval 34027 pclfvalN 37882 docaffvalN 39114 docafvalN 39115 etransclem11 43740 issmflem 44214 issmfd 44222 cnfsmf 44227 issmflelem 44231 issmfgtlem 44242 issmfgt 44243 issmfled 44244 issmfgtd 44247 issmfgelem 44255 fvmptrabdm 44736 prprspr2 44922 assintopmap 45352 mndpsuppss 45659 dmatALTval 45693 rrxsphere 46046 |
Copyright terms: Public domain | W3C validator |