Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabeqdv | Structured version Visualization version GIF version |
Description: Equality of restricted class abstractions. Deduction form of rabeq 3408. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
rabeqdv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
rabeqdv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeqdv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | rabeq 3408 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 {crab 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 |
This theorem is referenced by: rabeqbidv 3410 rabeqbidva 3411 rabsnif 4656 fvmptrabfv 6888 suppvalfng 7955 suppvalfn 7956 suppsnop 7965 fnsuppres 7978 pmvalg 8584 cantnffval 9351 hashbc 14093 elovmpowrd 14189 dfphi2 16403 mrisval 17256 coafval 17695 pmtrfval 18973 dprdval 19521 lspfval 20150 lsppropd 20195 rrgval 20471 dsmmbas2 20854 frlmbas 20872 aspval 20987 mvrfval 21099 mhpfval 21239 clsfval 22084 ordtrest 22261 ordtrest2lem 22262 ordtrest2 22263 xkoval 22646 xkopt 22714 tsmsval2 23189 cncfval 23957 isphtpy 24050 cfilfval 24333 iscmet 24353 ttgval 27140 eengv 27250 isupgr 27357 upgrop 27367 isumgr 27368 upgrun 27391 umgrun 27393 isuspgr 27425 isusgr 27426 isuspgrop 27434 isusgrop 27435 isausgr 27437 ausgrusgrb 27438 usgrstrrepe 27505 lfuhgr1v0e 27524 usgrexmpl 27533 usgrexi 27711 cusgrsize 27724 1loopgrvd2 27773 wwlksn 28103 wspthsn 28114 iswwlksnon 28119 iswspthsnon 28122 clwwlknonmpo 28354 clwwlknon 28355 clwwlk0on0 28357 rmfsupp2 31394 idlsrgval 31550 rspectopn 31719 zar0ring 31730 ordtprsval 31770 snmlfval 33192 mpstval 33397 leftval 33974 rightval 33975 pclfvalN 37830 docaffvalN 39062 docafvalN 39063 etransclem11 43676 issmflem 44150 issmfd 44158 cnfsmf 44163 issmflelem 44167 issmfgtlem 44178 issmfgt 44179 issmfled 44180 issmfgtd 44183 issmfgelem 44191 fvmptrabdm 44672 prprspr2 44858 assintopmap 45288 mndpsuppss 45595 dmatALTval 45629 rrxsphere 45982 |
Copyright terms: Public domain | W3C validator |