| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabeqdv | Structured version Visualization version GIF version | ||
| Description: Equality of restricted class abstractions. Deduction form of rabeq 3420. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| rabeqdv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| rabeqdv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqdv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | rabeq 3420 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 {crab 3405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 |
| This theorem is referenced by: rabeqbidvaOLD 3423 rabsnif 4687 fvmptrabfv 7000 suppvalfng 8146 suppvalfn 8147 suppsnop 8157 fnsuppres 8170 pmvalg 8810 cantnffval 9616 hashbc 14418 elovmpowrd 14523 dfphi2 16744 mrisval 17591 coafval 18026 mndpsuppss 18692 pmtrfval 19380 dprdval 19935 rrgval 20606 lspfval 20879 lsppropd 20925 dsmmbas2 21646 frlmbas 21664 aspval 21782 mvrfval 21890 mhpfval 22025 psdffval 22044 clsfval 22912 ordtrest 23089 ordtrest2lem 23090 ordtrest2 23091 xkoval 23474 xkopt 23542 tsmsval2 24017 cncfval 24781 isphtpy 24880 cfilfval 25164 iscmet 25184 leftval 27771 rightval 27772 ttgval 28802 eengv 28906 isupgr 29011 upgrop 29021 isumgr 29022 upgrun 29045 umgrun 29047 isuspgr 29079 isusgr 29080 isuspgrop 29088 isusgrop 29089 isausgr 29091 ausgrusgrb 29092 usgrstrrepe 29162 lfuhgr1v0e 29181 usgrexi 29368 cusgrsize 29382 1loopgrvd2 29431 wwlksn 29767 wspthsn 29778 iswwlksnon 29783 iswspthsnon 29786 clwwlknonmpo 30018 clwwlknon 30019 clwwlk0on0 30021 fxpgaval 33124 rmfsupp2 33189 idlsrgval 33474 rspectopn 33857 zar0ring 33868 ordtprsval 33908 snmlfval 35317 mpstval 35522 pclfvalN 39883 docaffvalN 41115 docafvalN 41116 isprimroot 42081 dvnprodlem1 45944 etransclem11 46243 issmflem 46725 issmfd 46733 cnfsmf 46738 issmflelem 46742 issmfgtlem 46753 issmfgt 46754 issmfled 46755 issmfgtd 46759 issmfgelem 46767 fvmptrabdm 47294 prprspr2 47519 stgrusgra 47958 gpgusgra 48048 assintopmap 48194 dmatALTval 48389 rrxsphere 48737 initopropdlem 49229 termopropdlem 49230 |
| Copyright terms: Public domain | W3C validator |