| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabeqdv | Structured version Visualization version GIF version | ||
| Description: Equality of restricted class abstractions. Deduction form of rabeq 3409. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| rabeqdv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| rabeqdv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqdv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | rabeq 3409 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 {crab 3395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 |
| This theorem is referenced by: rabeqbidvaOLD 3412 rabsnif 4673 fvmptrabfv 6961 suppvalfng 8097 suppvalfn 8098 suppsnop 8108 fnsuppres 8121 pmvalg 8761 cantnffval 9553 hashbc 14360 elovmpowrd 14465 dfphi2 16685 mrisval 17536 coafval 17971 mndpsuppss 18673 pmtrfval 19362 dprdval 19917 rrgval 20612 lspfval 20906 lsppropd 20952 dsmmbas2 21674 frlmbas 21692 aspval 21810 mvrfval 21918 mhpfval 22053 psdffval 22072 clsfval 22940 ordtrest 23117 ordtrest2lem 23118 ordtrest2 23119 xkoval 23502 xkopt 23570 tsmsval2 24045 cncfval 24808 isphtpy 24907 cfilfval 25191 iscmet 25211 leftval 27804 rightval 27805 ttgval 28853 eengv 28957 isupgr 29062 upgrop 29072 isumgr 29073 upgrun 29096 umgrun 29098 isuspgr 29130 isusgr 29131 isuspgrop 29139 isusgrop 29140 isausgr 29142 ausgrusgrb 29143 usgrstrrepe 29213 lfuhgr1v0e 29232 usgrexi 29419 cusgrsize 29433 1loopgrvd2 29482 wwlksn 29815 wspthsn 29826 iswwlksnon 29831 iswspthsnon 29834 clwwlknonmpo 30069 clwwlknon 30070 clwwlk0on0 30072 fxpgaval 33136 rmfsupp2 33205 idlsrgval 33468 splyval 33582 esplyval 33585 rspectopn 33880 zar0ring 33891 ordtprsval 33931 snmlfval 35374 mpstval 35579 pclfvalN 39987 docaffvalN 41219 docafvalN 41220 isprimroot 42185 dvnprodlem1 46043 etransclem11 46342 issmflem 46824 issmfd 46832 cnfsmf 46837 issmflelem 46841 issmfgtlem 46852 issmfgt 46853 issmfled 46854 issmfgtd 46858 issmfgelem 46866 fvmptrabdm 47392 prprspr2 47617 stgrusgra 48058 gpgusgra 48156 assintopmap 48305 dmatALTval 48500 rrxsphere 48848 initopropdlem 49340 termopropdlem 49341 |
| Copyright terms: Public domain | W3C validator |