Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2clwwlk2 Structured version   Visualization version   GIF version

Theorem 2clwwlk2 28121
 Description: The set (𝑋𝐶2) of double loops of length 2 on a vertex 𝑋 is equal to the set of closed walks with length 2 on 𝑋. Considered as "double loops", the first of the two closed walks/loops is degenerated, i.e., has length 0. (Contributed by AV, 18-Feb-2022.) (Revised by AV, 20-Apr-2022.)
Hypothesis
Ref Expression
2clwwlk.c 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
Assertion
Ref Expression
2clwwlk2 (𝑋𝑉 → (𝑋𝐶2) = (𝑋(ClWWalksNOn‘𝐺)2))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤
Allowed substitution hints:   𝐶(𝑤,𝑣,𝑛)   𝑉(𝑤)

Proof of Theorem 2clwwlk2
StepHypRef Expression
1 2z 12008 . . . 4 2 ∈ ℤ
2 uzid 12252 . . . 4 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
31, 2ax-mp 5 . . 3 2 ∈ (ℤ‘2)
4 2clwwlk.c . . . 4 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
542clwwlk 28120 . . 3 ((𝑋𝑉 ∧ 2 ∈ (ℤ‘2)) → (𝑋𝐶2) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)2) ∣ (𝑤‘(2 − 2)) = 𝑋})
63, 5mpan2 689 . 2 (𝑋𝑉 → (𝑋𝐶2) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)2) ∣ (𝑤‘(2 − 2)) = 𝑋})
7 2cn 11706 . . . . . 6 2 ∈ ℂ
87subidi 10951 . . . . 5 (2 − 2) = 0
98fveq2i 6668 . . . 4 (𝑤‘(2 − 2)) = (𝑤‘0)
10 isclwwlknon 27864 . . . . 5 (𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)2) ↔ (𝑤 ∈ (2 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋))
1110simprbi 499 . . . 4 (𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)2) → (𝑤‘0) = 𝑋)
129, 11syl5eq 2868 . . 3 (𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)2) → (𝑤‘(2 − 2)) = 𝑋)
1312rabeqc 3678 . 2 {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)2) ∣ (𝑤‘(2 − 2)) = 𝑋} = (𝑋(ClWWalksNOn‘𝐺)2)
146, 13syl6eq 2872 1 (𝑋𝑉 → (𝑋𝐶2) = (𝑋(ClWWalksNOn‘𝐺)2))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1533   ∈ wcel 2110  {crab 3142  ‘cfv 6350  (class class class)co 7150   ∈ cmpo 7152  0cc0 10531   − cmin 10864  2c2 11686  ℤcz 11975  ℤ≥cuz 12237   ClWWalksN cclwwlkn 27796  ClWWalksNOncclwwlknon 27860 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-n0 11892  df-xnn0 11962  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028  df-hash 13685  df-word 13856  df-clwwlk 27754  df-clwwlkn 27797  df-clwwlknon 27861 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator