![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2clwwlk2 | Structured version Visualization version GIF version |
Description: The set (ππΆ2) of double loops of length 2 on a vertex π is equal to the set of closed walks with length 2 on π. Considered as "double loops", the first of the two closed walks/loops is degenerated, i.e., has length 0. (Contributed by AV, 18-Feb-2022.) (Revised by AV, 20-Apr-2022.) |
Ref | Expression |
---|---|
2clwwlk.c | β’ πΆ = (π£ β π, π β (β€β₯β2) β¦ {π€ β (π£(ClWWalksNOnβπΊ)π) β£ (π€β(π β 2)) = π£}) |
Ref | Expression |
---|---|
2clwwlk2 | β’ (π β π β (ππΆ2) = (π(ClWWalksNOnβπΊ)2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2z 12599 | . . . 4 β’ 2 β β€ | |
2 | uzid 12842 | . . . 4 β’ (2 β β€ β 2 β (β€β₯β2)) | |
3 | 1, 2 | ax-mp 5 | . . 3 β’ 2 β (β€β₯β2) |
4 | 2clwwlk.c | . . . 4 β’ πΆ = (π£ β π, π β (β€β₯β2) β¦ {π€ β (π£(ClWWalksNOnβπΊ)π) β£ (π€β(π β 2)) = π£}) | |
5 | 4 | 2clwwlk 29868 | . . 3 β’ ((π β π β§ 2 β (β€β₯β2)) β (ππΆ2) = {π€ β (π(ClWWalksNOnβπΊ)2) β£ (π€β(2 β 2)) = π}) |
6 | 3, 5 | mpan2 688 | . 2 β’ (π β π β (ππΆ2) = {π€ β (π(ClWWalksNOnβπΊ)2) β£ (π€β(2 β 2)) = π}) |
7 | 2cn 12292 | . . . . . 6 β’ 2 β β | |
8 | 7 | subidi 11536 | . . . . 5 β’ (2 β 2) = 0 |
9 | 8 | fveq2i 6894 | . . . 4 β’ (π€β(2 β 2)) = (π€β0) |
10 | isclwwlknon 29612 | . . . . 5 β’ (π€ β (π(ClWWalksNOnβπΊ)2) β (π€ β (2 ClWWalksN πΊ) β§ (π€β0) = π)) | |
11 | 10 | simprbi 496 | . . . 4 β’ (π€ β (π(ClWWalksNOnβπΊ)2) β (π€β0) = π) |
12 | 9, 11 | eqtrid 2783 | . . 3 β’ (π€ β (π(ClWWalksNOnβπΊ)2) β (π€β(2 β 2)) = π) |
13 | 12 | rabeqc 3443 | . 2 β’ {π€ β (π(ClWWalksNOnβπΊ)2) β£ (π€β(2 β 2)) = π} = (π(ClWWalksNOnβπΊ)2) |
14 | 6, 13 | eqtrdi 2787 | 1 β’ (π β π β (ππΆ2) = (π(ClWWalksNOnβπΊ)2)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 {crab 3431 βcfv 6543 (class class class)co 7412 β cmpo 7414 0cc0 11114 β cmin 11449 2c2 12272 β€cz 12563 β€β₯cuz 12827 ClWWalksN cclwwlkn 29545 ClWWalksNOncclwwlknon 29608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-oadd 8474 df-er 8707 df-map 8826 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-card 9938 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-n0 12478 df-xnn0 12550 df-z 12564 df-uz 12828 df-fz 13490 df-fzo 13633 df-hash 14296 df-word 14470 df-clwwlk 29503 df-clwwlkn 29546 df-clwwlknon 29609 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |