![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2clwwlk2 | Structured version Visualization version GIF version |
Description: The set (𝑋𝐶2) of double loops of length 2 on a vertex 𝑋 is equal to the set of closed walks with length 2 on 𝑋. Considered as "double loops", the first of the two closed walks/loops is degenerated, i.e., has length 0. (Contributed by AV, 18-Feb-2022.) (Revised by AV, 20-Apr-2022.) |
Ref | Expression |
---|---|
2clwwlk.c | ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) |
Ref | Expression |
---|---|
2clwwlk2 | ⊢ (𝑋 ∈ 𝑉 → (𝑋𝐶2) = (𝑋(ClWWalksNOn‘𝐺)2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2z 11699 | . . . 4 ⊢ 2 ∈ ℤ | |
2 | uzid 11945 | . . . 4 ⊢ (2 ∈ ℤ → 2 ∈ (ℤ≥‘2)) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ 2 ∈ (ℤ≥‘2) |
4 | 2clwwlk.c | . . . 4 ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) | |
5 | 4 | 2clwwlk 27701 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 2 ∈ (ℤ≥‘2)) → (𝑋𝐶2) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)2) ∣ (𝑤‘(2 − 2)) = 𝑋}) |
6 | 3, 5 | mpan2 683 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝑋𝐶2) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)2) ∣ (𝑤‘(2 − 2)) = 𝑋}) |
7 | 2cn 11388 | . . . . . 6 ⊢ 2 ∈ ℂ | |
8 | 7 | subidi 10644 | . . . . 5 ⊢ (2 − 2) = 0 |
9 | 8 | fveq2i 6414 | . . . 4 ⊢ (𝑤‘(2 − 2)) = (𝑤‘0) |
10 | isclwwlknon 27428 | . . . . 5 ⊢ (𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)2) ↔ (𝑤 ∈ (2 ClWWalksN 𝐺) ∧ (𝑤‘0) = 𝑋)) | |
11 | 10 | simprbi 491 | . . . 4 ⊢ (𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)2) → (𝑤‘0) = 𝑋) |
12 | 9, 11 | syl5eq 2845 | . . 3 ⊢ (𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)2) → (𝑤‘(2 − 2)) = 𝑋) |
13 | 12 | rabeqc 3554 | . 2 ⊢ {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)2) ∣ (𝑤‘(2 − 2)) = 𝑋} = (𝑋(ClWWalksNOn‘𝐺)2) |
14 | 6, 13 | syl6eq 2849 | 1 ⊢ (𝑋 ∈ 𝑉 → (𝑋𝐶2) = (𝑋(ClWWalksNOn‘𝐺)2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 {crab 3093 ‘cfv 6101 (class class class)co 6878 ↦ cmpt2 6880 0cc0 10224 − cmin 10556 2c2 11368 ℤcz 11666 ℤ≥cuz 11930 ClWWalksN cclwwlkn 27326 ClWWalksNOncclwwlknon 27423 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-1st 7401 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-oadd 7803 df-er 7982 df-map 8097 df-pm 8098 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-card 9051 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-nn 11313 df-2 11376 df-n0 11581 df-xnn0 11653 df-z 11667 df-uz 11931 df-fz 12581 df-fzo 12721 df-hash 13371 df-word 13535 df-clwwlk 27275 df-clwwlkn 27328 df-clwwlknon 27424 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |