MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bday0s Structured version   Visualization version   GIF version

Theorem bday0s 27747
Description: Calculate the birthday of surreal zero. (Contributed by Scott Fenton, 7-Aug-2024.)
Assertion
Ref Expression
bday0s ( bday ‘ 0s ) = ∅

Proof of Theorem bday0s
StepHypRef Expression
1 df-0s 27743 . . . 4 0s = (∅ |s ∅)
21fveq2i 6864 . . 3 ( bday ‘ 0s ) = ( bday ‘(∅ |s ∅))
3 0elpw 5314 . . . 4 ∅ ∈ 𝒫 No
4 nulssgt 27717 . . . 4 (∅ ∈ 𝒫 No → ∅ <<s ∅)
5 scutbday 27723 . . . 4 (∅ <<s ∅ → ( bday ‘(∅ |s ∅)) = ( bday “ {𝑥 No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)}))
63, 4, 5mp2b 10 . . 3 ( bday ‘(∅ |s ∅)) = ( bday “ {𝑥 No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)})
72, 6eqtri 2753 . 2 ( bday ‘ 0s ) = ( bday “ {𝑥 No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)})
8 snelpwi 5406 . . . . . . . 8 (𝑥 No → {𝑥} ∈ 𝒫 No )
9 nulsslt 27716 . . . . . . . . 9 ({𝑥} ∈ 𝒫 No → ∅ <<s {𝑥})
10 nulssgt 27717 . . . . . . . . 9 ({𝑥} ∈ 𝒫 No → {𝑥} <<s ∅)
119, 10jca 511 . . . . . . . 8 ({𝑥} ∈ 𝒫 No → (∅ <<s {𝑥} ∧ {𝑥} <<s ∅))
128, 11syl 17 . . . . . . 7 (𝑥 No → (∅ <<s {𝑥} ∧ {𝑥} <<s ∅))
1312rabeqc 3421 . . . . . 6 {𝑥 No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)} = No
14 bdaydm 27693 . . . . . 6 dom bday = No
1513, 14eqtr4i 2756 . . . . 5 {𝑥 No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)} = dom bday
1615imaeq2i 6032 . . . 4 ( bday “ {𝑥 No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)}) = ( bday “ dom bday )
17 imadmrn 6044 . . . 4 ( bday “ dom bday ) = ran bday
18 bdayrn 27694 . . . 4 ran bday = On
1916, 17, 183eqtri 2757 . . 3 ( bday “ {𝑥 No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)}) = On
2019inteqi 4917 . 2 ( bday “ {𝑥 No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)}) = On
21 inton 6394 . 2 On = ∅
227, 20, 213eqtri 2757 1 ( bday ‘ 0s ) = ∅
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  {crab 3408  c0 4299  𝒫 cpw 4566  {csn 4592   cint 4913   class class class wbr 5110  dom cdm 5641  ran crn 5642  cima 5644  Oncon0 6335  cfv 6514  (class class class)co 7390   No csur 27558   bday cbday 27560   <<s csslt 27699   |s cscut 27701   0s c0s 27741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1o 8437  df-2o 8438  df-no 27561  df-slt 27562  df-bday 27563  df-sslt 27700  df-scut 27702  df-0s 27743
This theorem is referenced by:  bday0b  27749  bday1s  27750  cuteq0  27751  left0s  27811  right0s  27812  0elold  27828  addsproplem2  27884  negsproplem2  27942  negsproplem6  27946  mulsproplem2  28027  mulsproplem3  28028  mulsproplem4  28029  mulsproplem5  28030  mulsproplem6  28031  mulsproplem7  28032  mulsproplem8  28033  mulsproplem12  28037  mulsproplem13  28038  mulsproplem14  28039  n0sbday  28251  bdayn0sf1o  28266
  Copyright terms: Public domain W3C validator