| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bday0s | Structured version Visualization version GIF version | ||
| Description: Calculate the birthday of surreal zero. (Contributed by Scott Fenton, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| bday0s | ⊢ ( bday ‘ 0s ) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-0s 27869 | . . . 4 ⊢ 0s = (∅ |s ∅) | |
| 2 | 1 | fveq2i 6909 | . . 3 ⊢ ( bday ‘ 0s ) = ( bday ‘(∅ |s ∅)) |
| 3 | 0elpw 5356 | . . . 4 ⊢ ∅ ∈ 𝒫 No | |
| 4 | nulssgt 27843 | . . . 4 ⊢ (∅ ∈ 𝒫 No → ∅ <<s ∅) | |
| 5 | scutbday 27849 | . . . 4 ⊢ (∅ <<s ∅ → ( bday ‘(∅ |s ∅)) = ∩ ( bday “ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)})) | |
| 6 | 3, 4, 5 | mp2b 10 | . . 3 ⊢ ( bday ‘(∅ |s ∅)) = ∩ ( bday “ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)}) |
| 7 | 2, 6 | eqtri 2765 | . 2 ⊢ ( bday ‘ 0s ) = ∩ ( bday “ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)}) |
| 8 | snelpwi 5448 | . . . . . . . 8 ⊢ (𝑥 ∈ No → {𝑥} ∈ 𝒫 No ) | |
| 9 | nulsslt 27842 | . . . . . . . . 9 ⊢ ({𝑥} ∈ 𝒫 No → ∅ <<s {𝑥}) | |
| 10 | nulssgt 27843 | . . . . . . . . 9 ⊢ ({𝑥} ∈ 𝒫 No → {𝑥} <<s ∅) | |
| 11 | 9, 10 | jca 511 | . . . . . . . 8 ⊢ ({𝑥} ∈ 𝒫 No → (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)) |
| 12 | 8, 11 | syl 17 | . . . . . . 7 ⊢ (𝑥 ∈ No → (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)) |
| 13 | 12 | rabeqc 3449 | . . . . . 6 ⊢ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)} = No |
| 14 | bdaydm 27819 | . . . . . 6 ⊢ dom bday = No | |
| 15 | 13, 14 | eqtr4i 2768 | . . . . 5 ⊢ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)} = dom bday |
| 16 | 15 | imaeq2i 6076 | . . . 4 ⊢ ( bday “ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)}) = ( bday “ dom bday ) |
| 17 | imadmrn 6088 | . . . 4 ⊢ ( bday “ dom bday ) = ran bday | |
| 18 | bdayrn 27820 | . . . 4 ⊢ ran bday = On | |
| 19 | 16, 17, 18 | 3eqtri 2769 | . . 3 ⊢ ( bday “ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)}) = On |
| 20 | 19 | inteqi 4950 | . 2 ⊢ ∩ ( bday “ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)}) = ∩ On |
| 21 | inton 6442 | . 2 ⊢ ∩ On = ∅ | |
| 22 | 7, 20, 21 | 3eqtri 2769 | 1 ⊢ ( bday ‘ 0s ) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2108 {crab 3436 ∅c0 4333 𝒫 cpw 4600 {csn 4626 ∩ cint 4946 class class class wbr 5143 dom cdm 5685 ran crn 5686 “ cima 5688 Oncon0 6384 ‘cfv 6561 (class class class)co 7431 No csur 27684 bday cbday 27686 <<s csslt 27825 |s cscut 27827 0s c0s 27867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-ord 6387 df-on 6388 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1o 8506 df-2o 8507 df-no 27687 df-slt 27688 df-bday 27689 df-sslt 27826 df-scut 27828 df-0s 27869 |
| This theorem is referenced by: bday0b 27875 bday1s 27876 cuteq0 27877 left0s 27931 right0s 27932 0elold 27947 addsproplem2 28003 negsproplem2 28061 negsproplem6 28065 mulsproplem2 28143 mulsproplem3 28144 mulsproplem4 28145 mulsproplem5 28146 mulsproplem6 28147 mulsproplem7 28148 mulsproplem8 28149 mulsproplem12 28153 mulsproplem13 28154 mulsproplem14 28155 n0sbday 28354 pw2bday 28418 |
| Copyright terms: Public domain | W3C validator |