| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bday0s | Structured version Visualization version GIF version | ||
| Description: Calculate the birthday of surreal zero. (Contributed by Scott Fenton, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| bday0s | ⊢ ( bday ‘ 0s ) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-0s 27778 | . . . 4 ⊢ 0s = (∅ |s ∅) | |
| 2 | 1 | fveq2i 6834 | . . 3 ⊢ ( bday ‘ 0s ) = ( bday ‘(∅ |s ∅)) |
| 3 | 0elpw 5298 | . . . 4 ⊢ ∅ ∈ 𝒫 No | |
| 4 | nulssgt 27749 | . . . 4 ⊢ (∅ ∈ 𝒫 No → ∅ <<s ∅) | |
| 5 | scutbday 27755 | . . . 4 ⊢ (∅ <<s ∅ → ( bday ‘(∅ |s ∅)) = ∩ ( bday “ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)})) | |
| 6 | 3, 4, 5 | mp2b 10 | . . 3 ⊢ ( bday ‘(∅ |s ∅)) = ∩ ( bday “ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)}) |
| 7 | 2, 6 | eqtri 2756 | . 2 ⊢ ( bday ‘ 0s ) = ∩ ( bday “ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)}) |
| 8 | snelpwi 5389 | . . . . . . . 8 ⊢ (𝑥 ∈ No → {𝑥} ∈ 𝒫 No ) | |
| 9 | nulsslt 27748 | . . . . . . . . 9 ⊢ ({𝑥} ∈ 𝒫 No → ∅ <<s {𝑥}) | |
| 10 | nulssgt 27749 | . . . . . . . . 9 ⊢ ({𝑥} ∈ 𝒫 No → {𝑥} <<s ∅) | |
| 11 | 9, 10 | jca 511 | . . . . . . . 8 ⊢ ({𝑥} ∈ 𝒫 No → (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)) |
| 12 | 8, 11 | syl 17 | . . . . . . 7 ⊢ (𝑥 ∈ No → (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)) |
| 13 | 12 | rabeqc 3409 | . . . . . 6 ⊢ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)} = No |
| 14 | bdaydm 27723 | . . . . . 6 ⊢ dom bday = No | |
| 15 | 13, 14 | eqtr4i 2759 | . . . . 5 ⊢ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)} = dom bday |
| 16 | 15 | imaeq2i 6014 | . . . 4 ⊢ ( bday “ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)}) = ( bday “ dom bday ) |
| 17 | imadmrn 6026 | . . . 4 ⊢ ( bday “ dom bday ) = ran bday | |
| 18 | bdayrn 27724 | . . . 4 ⊢ ran bday = On | |
| 19 | 16, 17, 18 | 3eqtri 2760 | . . 3 ⊢ ( bday “ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)}) = On |
| 20 | 19 | inteqi 4903 | . 2 ⊢ ∩ ( bday “ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)}) = ∩ On |
| 21 | inton 6373 | . 2 ⊢ ∩ On = ∅ | |
| 22 | 7, 20, 21 | 3eqtri 2760 | 1 ⊢ ( bday ‘ 0s ) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2113 {crab 3397 ∅c0 4284 𝒫 cpw 4551 {csn 4577 ∩ cint 4899 class class class wbr 5095 dom cdm 5621 ran crn 5622 “ cima 5624 Oncon0 6314 ‘cfv 6489 (class class class)co 7355 No csur 27588 bday cbday 27590 <<s csslt 27730 |s cscut 27732 0s c0s 27776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ord 6317 df-on 6318 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1o 8394 df-2o 8395 df-no 27591 df-slt 27592 df-bday 27593 df-sslt 27731 df-scut 27733 df-0s 27778 |
| This theorem is referenced by: bday0b 27784 bday1s 27785 cuteq0 27786 left0s 27848 right0s 27849 0elold 27865 addsproplem2 27923 negsproplem2 27981 negsproplem6 27985 mulsproplem2 28066 mulsproplem3 28067 mulsproplem4 28068 mulsproplem5 28069 mulsproplem6 28070 mulsproplem7 28071 mulsproplem8 28072 mulsproplem12 28076 mulsproplem13 28077 mulsproplem14 28078 n0sbday 28290 bdayn0sf1o 28305 |
| Copyright terms: Public domain | W3C validator |