| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bday0s | Structured version Visualization version GIF version | ||
| Description: Calculate the birthday of surreal zero. (Contributed by Scott Fenton, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| bday0s | ⊢ ( bday ‘ 0s ) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-0s 27756 | . . . 4 ⊢ 0s = (∅ |s ∅) | |
| 2 | 1 | fveq2i 6829 | . . 3 ⊢ ( bday ‘ 0s ) = ( bday ‘(∅ |s ∅)) |
| 3 | 0elpw 5298 | . . . 4 ⊢ ∅ ∈ 𝒫 No | |
| 4 | nulssgt 27727 | . . . 4 ⊢ (∅ ∈ 𝒫 No → ∅ <<s ∅) | |
| 5 | scutbday 27733 | . . . 4 ⊢ (∅ <<s ∅ → ( bday ‘(∅ |s ∅)) = ∩ ( bday “ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)})) | |
| 6 | 3, 4, 5 | mp2b 10 | . . 3 ⊢ ( bday ‘(∅ |s ∅)) = ∩ ( bday “ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)}) |
| 7 | 2, 6 | eqtri 2752 | . 2 ⊢ ( bday ‘ 0s ) = ∩ ( bday “ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)}) |
| 8 | snelpwi 5390 | . . . . . . . 8 ⊢ (𝑥 ∈ No → {𝑥} ∈ 𝒫 No ) | |
| 9 | nulsslt 27726 | . . . . . . . . 9 ⊢ ({𝑥} ∈ 𝒫 No → ∅ <<s {𝑥}) | |
| 10 | nulssgt 27727 | . . . . . . . . 9 ⊢ ({𝑥} ∈ 𝒫 No → {𝑥} <<s ∅) | |
| 11 | 9, 10 | jca 511 | . . . . . . . 8 ⊢ ({𝑥} ∈ 𝒫 No → (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)) |
| 12 | 8, 11 | syl 17 | . . . . . . 7 ⊢ (𝑥 ∈ No → (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)) |
| 13 | 12 | rabeqc 3409 | . . . . . 6 ⊢ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)} = No |
| 14 | bdaydm 27702 | . . . . . 6 ⊢ dom bday = No | |
| 15 | 13, 14 | eqtr4i 2755 | . . . . 5 ⊢ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)} = dom bday |
| 16 | 15 | imaeq2i 6013 | . . . 4 ⊢ ( bday “ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)}) = ( bday “ dom bday ) |
| 17 | imadmrn 6025 | . . . 4 ⊢ ( bday “ dom bday ) = ran bday | |
| 18 | bdayrn 27703 | . . . 4 ⊢ ran bday = On | |
| 19 | 16, 17, 18 | 3eqtri 2756 | . . 3 ⊢ ( bday “ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)}) = On |
| 20 | 19 | inteqi 4903 | . 2 ⊢ ∩ ( bday “ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)}) = ∩ On |
| 21 | inton 6370 | . 2 ⊢ ∩ On = ∅ | |
| 22 | 7, 20, 21 | 3eqtri 2756 | 1 ⊢ ( bday ‘ 0s ) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3396 ∅c0 4286 𝒫 cpw 4553 {csn 4579 ∩ cint 4899 class class class wbr 5095 dom cdm 5623 ran crn 5624 “ cima 5626 Oncon0 6311 ‘cfv 6486 (class class class)co 7353 No csur 27567 bday cbday 27569 <<s csslt 27709 |s cscut 27711 0s c0s 27754 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ord 6314 df-on 6315 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1o 8395 df-2o 8396 df-no 27570 df-slt 27571 df-bday 27572 df-sslt 27710 df-scut 27712 df-0s 27756 |
| This theorem is referenced by: bday0b 27762 bday1s 27763 cuteq0 27764 left0s 27825 right0s 27826 0elold 27842 addsproplem2 27900 negsproplem2 27958 negsproplem6 27962 mulsproplem2 28043 mulsproplem3 28044 mulsproplem4 28045 mulsproplem5 28046 mulsproplem6 28047 mulsproplem7 28048 mulsproplem8 28049 mulsproplem12 28053 mulsproplem13 28054 mulsproplem14 28055 n0sbday 28267 bdayn0sf1o 28282 |
| Copyright terms: Public domain | W3C validator |