| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bday0s | Structured version Visualization version GIF version | ||
| Description: Calculate the birthday of surreal zero. (Contributed by Scott Fenton, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| bday0s | ⊢ ( bday ‘ 0s ) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-0s 27743 | . . . 4 ⊢ 0s = (∅ |s ∅) | |
| 2 | 1 | fveq2i 6864 | . . 3 ⊢ ( bday ‘ 0s ) = ( bday ‘(∅ |s ∅)) |
| 3 | 0elpw 5314 | . . . 4 ⊢ ∅ ∈ 𝒫 No | |
| 4 | nulssgt 27717 | . . . 4 ⊢ (∅ ∈ 𝒫 No → ∅ <<s ∅) | |
| 5 | scutbday 27723 | . . . 4 ⊢ (∅ <<s ∅ → ( bday ‘(∅ |s ∅)) = ∩ ( bday “ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)})) | |
| 6 | 3, 4, 5 | mp2b 10 | . . 3 ⊢ ( bday ‘(∅ |s ∅)) = ∩ ( bday “ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)}) |
| 7 | 2, 6 | eqtri 2753 | . 2 ⊢ ( bday ‘ 0s ) = ∩ ( bday “ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)}) |
| 8 | snelpwi 5406 | . . . . . . . 8 ⊢ (𝑥 ∈ No → {𝑥} ∈ 𝒫 No ) | |
| 9 | nulsslt 27716 | . . . . . . . . 9 ⊢ ({𝑥} ∈ 𝒫 No → ∅ <<s {𝑥}) | |
| 10 | nulssgt 27717 | . . . . . . . . 9 ⊢ ({𝑥} ∈ 𝒫 No → {𝑥} <<s ∅) | |
| 11 | 9, 10 | jca 511 | . . . . . . . 8 ⊢ ({𝑥} ∈ 𝒫 No → (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)) |
| 12 | 8, 11 | syl 17 | . . . . . . 7 ⊢ (𝑥 ∈ No → (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)) |
| 13 | 12 | rabeqc 3421 | . . . . . 6 ⊢ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)} = No |
| 14 | bdaydm 27693 | . . . . . 6 ⊢ dom bday = No | |
| 15 | 13, 14 | eqtr4i 2756 | . . . . 5 ⊢ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)} = dom bday |
| 16 | 15 | imaeq2i 6032 | . . . 4 ⊢ ( bday “ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)}) = ( bday “ dom bday ) |
| 17 | imadmrn 6044 | . . . 4 ⊢ ( bday “ dom bday ) = ran bday | |
| 18 | bdayrn 27694 | . . . 4 ⊢ ran bday = On | |
| 19 | 16, 17, 18 | 3eqtri 2757 | . . 3 ⊢ ( bday “ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)}) = On |
| 20 | 19 | inteqi 4917 | . 2 ⊢ ∩ ( bday “ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)}) = ∩ On |
| 21 | inton 6394 | . 2 ⊢ ∩ On = ∅ | |
| 22 | 7, 20, 21 | 3eqtri 2757 | 1 ⊢ ( bday ‘ 0s ) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3408 ∅c0 4299 𝒫 cpw 4566 {csn 4592 ∩ cint 4913 class class class wbr 5110 dom cdm 5641 ran crn 5642 “ cima 5644 Oncon0 6335 ‘cfv 6514 (class class class)co 7390 No csur 27558 bday cbday 27560 <<s csslt 27699 |s cscut 27701 0s c0s 27741 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1o 8437 df-2o 8438 df-no 27561 df-slt 27562 df-bday 27563 df-sslt 27700 df-scut 27702 df-0s 27743 |
| This theorem is referenced by: bday0b 27749 bday1s 27750 cuteq0 27751 left0s 27811 right0s 27812 0elold 27828 addsproplem2 27884 negsproplem2 27942 negsproplem6 27946 mulsproplem2 28027 mulsproplem3 28028 mulsproplem4 28029 mulsproplem5 28030 mulsproplem6 28031 mulsproplem7 28032 mulsproplem8 28033 mulsproplem12 28037 mulsproplem13 28038 mulsproplem14 28039 n0sbday 28251 bdayn0sf1o 28266 |
| Copyright terms: Public domain | W3C validator |