![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bday0s | Structured version Visualization version GIF version |
Description: Calculate the birthday of surreal zero. (Contributed by Scott Fenton, 7-Aug-2024.) |
Ref | Expression |
---|---|
bday0s | ⊢ ( bday ‘ 0s ) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-0s 27887 | . . . 4 ⊢ 0s = (∅ |s ∅) | |
2 | 1 | fveq2i 6923 | . . 3 ⊢ ( bday ‘ 0s ) = ( bday ‘(∅ |s ∅)) |
3 | 0elpw 5374 | . . . 4 ⊢ ∅ ∈ 𝒫 No | |
4 | nulssgt 27861 | . . . 4 ⊢ (∅ ∈ 𝒫 No → ∅ <<s ∅) | |
5 | scutbday 27867 | . . . 4 ⊢ (∅ <<s ∅ → ( bday ‘(∅ |s ∅)) = ∩ ( bday “ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)})) | |
6 | 3, 4, 5 | mp2b 10 | . . 3 ⊢ ( bday ‘(∅ |s ∅)) = ∩ ( bday “ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)}) |
7 | 2, 6 | eqtri 2768 | . 2 ⊢ ( bday ‘ 0s ) = ∩ ( bday “ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)}) |
8 | snelpwi 5463 | . . . . . . . 8 ⊢ (𝑥 ∈ No → {𝑥} ∈ 𝒫 No ) | |
9 | nulsslt 27860 | . . . . . . . . 9 ⊢ ({𝑥} ∈ 𝒫 No → ∅ <<s {𝑥}) | |
10 | nulssgt 27861 | . . . . . . . . 9 ⊢ ({𝑥} ∈ 𝒫 No → {𝑥} <<s ∅) | |
11 | 9, 10 | jca 511 | . . . . . . . 8 ⊢ ({𝑥} ∈ 𝒫 No → (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)) |
12 | 8, 11 | syl 17 | . . . . . . 7 ⊢ (𝑥 ∈ No → (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)) |
13 | 12 | rabeqc 3456 | . . . . . 6 ⊢ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)} = No |
14 | bdaydm 27837 | . . . . . 6 ⊢ dom bday = No | |
15 | 13, 14 | eqtr4i 2771 | . . . . 5 ⊢ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)} = dom bday |
16 | 15 | imaeq2i 6087 | . . . 4 ⊢ ( bday “ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)}) = ( bday “ dom bday ) |
17 | imadmrn 6099 | . . . 4 ⊢ ( bday “ dom bday ) = ran bday | |
18 | bdayrn 27838 | . . . 4 ⊢ ran bday = On | |
19 | 16, 17, 18 | 3eqtri 2772 | . . 3 ⊢ ( bday “ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)}) = On |
20 | 19 | inteqi 4974 | . 2 ⊢ ∩ ( bday “ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)}) = ∩ On |
21 | inton 6453 | . 2 ⊢ ∩ On = ∅ | |
22 | 7, 20, 21 | 3eqtri 2772 | 1 ⊢ ( bday ‘ 0s ) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 ∅c0 4352 𝒫 cpw 4622 {csn 4648 ∩ cint 4970 class class class wbr 5166 dom cdm 5700 ran crn 5701 “ cima 5703 Oncon0 6395 ‘cfv 6573 (class class class)co 7448 No csur 27702 bday cbday 27704 <<s csslt 27843 |s cscut 27845 0s c0s 27885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1o 8522 df-2o 8523 df-no 27705 df-slt 27706 df-bday 27707 df-sslt 27844 df-scut 27846 df-0s 27887 |
This theorem is referenced by: bday0b 27893 bday1s 27894 cuteq0 27895 left0s 27949 right0s 27950 0elold 27965 addsproplem2 28021 negsproplem2 28079 negsproplem6 28083 mulsproplem2 28161 mulsproplem3 28162 mulsproplem4 28163 mulsproplem5 28164 mulsproplem6 28165 mulsproplem7 28166 mulsproplem8 28167 mulsproplem12 28171 mulsproplem13 28172 mulsproplem14 28173 n0sbday 28372 pw2bday 28436 |
Copyright terms: Public domain | W3C validator |