![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bday0s | Structured version Visualization version GIF version |
Description: Calculate the birthday of surreal zero. (Contributed by Scott Fenton, 7-Aug-2024.) |
Ref | Expression |
---|---|
bday0s | ⊢ ( bday ‘ 0s ) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-0s 27884 | . . . 4 ⊢ 0s = (∅ |s ∅) | |
2 | 1 | fveq2i 6910 | . . 3 ⊢ ( bday ‘ 0s ) = ( bday ‘(∅ |s ∅)) |
3 | 0elpw 5362 | . . . 4 ⊢ ∅ ∈ 𝒫 No | |
4 | nulssgt 27858 | . . . 4 ⊢ (∅ ∈ 𝒫 No → ∅ <<s ∅) | |
5 | scutbday 27864 | . . . 4 ⊢ (∅ <<s ∅ → ( bday ‘(∅ |s ∅)) = ∩ ( bday “ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)})) | |
6 | 3, 4, 5 | mp2b 10 | . . 3 ⊢ ( bday ‘(∅ |s ∅)) = ∩ ( bday “ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)}) |
7 | 2, 6 | eqtri 2763 | . 2 ⊢ ( bday ‘ 0s ) = ∩ ( bday “ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)}) |
8 | snelpwi 5454 | . . . . . . . 8 ⊢ (𝑥 ∈ No → {𝑥} ∈ 𝒫 No ) | |
9 | nulsslt 27857 | . . . . . . . . 9 ⊢ ({𝑥} ∈ 𝒫 No → ∅ <<s {𝑥}) | |
10 | nulssgt 27858 | . . . . . . . . 9 ⊢ ({𝑥} ∈ 𝒫 No → {𝑥} <<s ∅) | |
11 | 9, 10 | jca 511 | . . . . . . . 8 ⊢ ({𝑥} ∈ 𝒫 No → (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)) |
12 | 8, 11 | syl 17 | . . . . . . 7 ⊢ (𝑥 ∈ No → (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)) |
13 | 12 | rabeqc 3446 | . . . . . 6 ⊢ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)} = No |
14 | bdaydm 27834 | . . . . . 6 ⊢ dom bday = No | |
15 | 13, 14 | eqtr4i 2766 | . . . . 5 ⊢ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)} = dom bday |
16 | 15 | imaeq2i 6078 | . . . 4 ⊢ ( bday “ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)}) = ( bday “ dom bday ) |
17 | imadmrn 6090 | . . . 4 ⊢ ( bday “ dom bday ) = ran bday | |
18 | bdayrn 27835 | . . . 4 ⊢ ran bday = On | |
19 | 16, 17, 18 | 3eqtri 2767 | . . 3 ⊢ ( bday “ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)}) = On |
20 | 19 | inteqi 4955 | . 2 ⊢ ∩ ( bday “ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)}) = ∩ On |
21 | inton 6444 | . 2 ⊢ ∩ On = ∅ | |
22 | 7, 20, 21 | 3eqtri 2767 | 1 ⊢ ( bday ‘ 0s ) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2106 {crab 3433 ∅c0 4339 𝒫 cpw 4605 {csn 4631 ∩ cint 4951 class class class wbr 5148 dom cdm 5689 ran crn 5690 “ cima 5692 Oncon0 6386 ‘cfv 6563 (class class class)co 7431 No csur 27699 bday cbday 27701 <<s csslt 27840 |s cscut 27842 0s c0s 27882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1o 8505 df-2o 8506 df-no 27702 df-slt 27703 df-bday 27704 df-sslt 27841 df-scut 27843 df-0s 27884 |
This theorem is referenced by: bday0b 27890 bday1s 27891 cuteq0 27892 left0s 27946 right0s 27947 0elold 27962 addsproplem2 28018 negsproplem2 28076 negsproplem6 28080 mulsproplem2 28158 mulsproplem3 28159 mulsproplem4 28160 mulsproplem5 28161 mulsproplem6 28162 mulsproplem7 28163 mulsproplem8 28164 mulsproplem12 28168 mulsproplem13 28169 mulsproplem14 28170 n0sbday 28369 pw2bday 28433 |
Copyright terms: Public domain | W3C validator |