Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bday0s | Structured version Visualization version GIF version |
Description: Calculate the birthday of surreal zero. (Contributed by Scott Fenton, 7-Aug-2024.) |
Ref | Expression |
---|---|
bday0s | ⊢ ( bday ‘ 0s ) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-0s 33945 | . . . 4 ⊢ 0s = (∅ |s ∅) | |
2 | 1 | fveq2i 6759 | . . 3 ⊢ ( bday ‘ 0s ) = ( bday ‘(∅ |s ∅)) |
3 | 0elpw 5273 | . . . 4 ⊢ ∅ ∈ 𝒫 No | |
4 | nulssgt 33919 | . . . 4 ⊢ (∅ ∈ 𝒫 No → ∅ <<s ∅) | |
5 | scutbday 33925 | . . . 4 ⊢ (∅ <<s ∅ → ( bday ‘(∅ |s ∅)) = ∩ ( bday “ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)})) | |
6 | 3, 4, 5 | mp2b 10 | . . 3 ⊢ ( bday ‘(∅ |s ∅)) = ∩ ( bday “ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)}) |
7 | 2, 6 | eqtri 2766 | . 2 ⊢ ( bday ‘ 0s ) = ∩ ( bday “ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)}) |
8 | snelpwi 5354 | . . . . . . . 8 ⊢ (𝑥 ∈ No → {𝑥} ∈ 𝒫 No ) | |
9 | nulsslt 33918 | . . . . . . . . 9 ⊢ ({𝑥} ∈ 𝒫 No → ∅ <<s {𝑥}) | |
10 | nulssgt 33919 | . . . . . . . . 9 ⊢ ({𝑥} ∈ 𝒫 No → {𝑥} <<s ∅) | |
11 | 9, 10 | jca 511 | . . . . . . . 8 ⊢ ({𝑥} ∈ 𝒫 No → (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)) |
12 | 8, 11 | syl 17 | . . . . . . 7 ⊢ (𝑥 ∈ No → (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)) |
13 | 12 | rabeqc 3615 | . . . . . 6 ⊢ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)} = No |
14 | bdaydm 33896 | . . . . . 6 ⊢ dom bday = No | |
15 | 13, 14 | eqtr4i 2769 | . . . . 5 ⊢ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)} = dom bday |
16 | 15 | imaeq2i 5956 | . . . 4 ⊢ ( bday “ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)}) = ( bday “ dom bday ) |
17 | imadmrn 5968 | . . . 4 ⊢ ( bday “ dom bday ) = ran bday | |
18 | bdayrn 33897 | . . . 4 ⊢ ran bday = On | |
19 | 16, 17, 18 | 3eqtri 2770 | . . 3 ⊢ ( bday “ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)}) = On |
20 | 19 | inteqi 4880 | . 2 ⊢ ∩ ( bday “ {𝑥 ∈ No ∣ (∅ <<s {𝑥} ∧ {𝑥} <<s ∅)}) = ∩ On |
21 | inton 6308 | . 2 ⊢ ∩ On = ∅ | |
22 | 7, 20, 21 | 3eqtri 2770 | 1 ⊢ ( bday ‘ 0s ) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3067 ∅c0 4253 𝒫 cpw 4530 {csn 4558 ∩ cint 4876 class class class wbr 5070 dom cdm 5580 ran crn 5581 “ cima 5583 Oncon0 6251 ‘cfv 6418 (class class class)co 7255 No csur 33770 bday cbday 33772 <<s csslt 33902 |s cscut 33904 0s c0s 33943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1o 8267 df-2o 8268 df-no 33773 df-slt 33774 df-bday 33775 df-sslt 33903 df-scut 33905 df-0s 33945 |
This theorem is referenced by: bday0b 33951 bday1s 33952 left0s 34002 right0s 34003 |
Copyright terms: Public domain | W3C validator |