![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fply1 | Structured version Visualization version GIF version |
Description: Conditions for a function to be a univariate polynomial. (Contributed by Thierry Arnoux, 19-Aug-2023.) |
Ref | Expression |
---|---|
fply1.1 | β’ 0 = (0gβπ ) |
fply1.2 | β’ π΅ = (Baseβπ ) |
fply1.3 | β’ π = (Baseβ(Poly1βπ )) |
fply1.4 | β’ (π β πΉ:(β0 βm 1o)βΆπ΅) |
fply1.5 | β’ (π β πΉ finSupp 0 ) |
Ref | Expression |
---|---|
fply1 | β’ (π β πΉ β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fply1.4 | . . . . 5 β’ (π β πΉ:(β0 βm 1o)βΆπ΅) | |
2 | fply1.2 | . . . . . . 7 β’ π΅ = (Baseβπ ) | |
3 | 2 | fvexi 6860 | . . . . . 6 β’ π΅ β V |
4 | ovex 7394 | . . . . . 6 β’ (β0 βm 1o) β V | |
5 | 3, 4 | elmap 8815 | . . . . 5 β’ (πΉ β (π΅ βm (β0 βm 1o)) β πΉ:(β0 βm 1o)βΆπ΅) |
6 | 1, 5 | sylibr 233 | . . . 4 β’ (π β πΉ β (π΅ βm (β0 βm 1o))) |
7 | df1o2 8423 | . . . . . . . . 9 β’ 1o = {β } | |
8 | snfi 8994 | . . . . . . . . 9 β’ {β } β Fin | |
9 | 7, 8 | eqeltri 2830 | . . . . . . . 8 β’ 1o β Fin |
10 | 9 | a1i 11 | . . . . . . 7 β’ (π β (β0 βm 1o) β 1o β Fin) |
11 | elmapi 8793 | . . . . . . 7 β’ (π β (β0 βm 1o) β π:1oβΆβ0) | |
12 | 10, 11 | fisuppfi 9320 | . . . . . 6 β’ (π β (β0 βm 1o) β (β‘π β β) β Fin) |
13 | 12 | rabeqc 3418 | . . . . 5 β’ {π β (β0 βm 1o) β£ (β‘π β β) β Fin} = (β0 βm 1o) |
14 | 13 | oveq2i 7372 | . . . 4 β’ (π΅ βm {π β (β0 βm 1o) β£ (β‘π β β) β Fin}) = (π΅ βm (β0 βm 1o)) |
15 | 6, 14 | eleqtrrdi 2845 | . . 3 β’ (π β πΉ β (π΅ βm {π β (β0 βm 1o) β£ (β‘π β β) β Fin})) |
16 | eqid 2733 | . . . 4 β’ (1o mPwSer π ) = (1o mPwSer π ) | |
17 | eqid 2733 | . . . 4 β’ {π β (β0 βm 1o) β£ (β‘π β β) β Fin} = {π β (β0 βm 1o) β£ (β‘π β β) β Fin} | |
18 | eqid 2733 | . . . 4 β’ (Baseβ(1o mPwSer π )) = (Baseβ(1o mPwSer π )) | |
19 | 1oex 8426 | . . . . 5 β’ 1o β V | |
20 | 19 | a1i 11 | . . . 4 β’ (π β 1o β V) |
21 | 16, 2, 17, 18, 20 | psrbas 21369 | . . 3 β’ (π β (Baseβ(1o mPwSer π )) = (π΅ βm {π β (β0 βm 1o) β£ (β‘π β β) β Fin})) |
22 | 15, 21 | eleqtrrd 2837 | . 2 β’ (π β πΉ β (Baseβ(1o mPwSer π ))) |
23 | fply1.5 | . 2 β’ (π β πΉ finSupp 0 ) | |
24 | eqid 2733 | . . 3 β’ (1o mPoly π ) = (1o mPoly π ) | |
25 | fply1.1 | . . 3 β’ 0 = (0gβπ ) | |
26 | eqid 2733 | . . . 4 β’ (Poly1βπ ) = (Poly1βπ ) | |
27 | eqid 2733 | . . . 4 β’ (PwSer1βπ ) = (PwSer1βπ ) | |
28 | fply1.3 | . . . 4 β’ π = (Baseβ(Poly1βπ )) | |
29 | 26, 27, 28 | ply1bas 21589 | . . 3 β’ π = (Baseβ(1o mPoly π )) |
30 | 24, 16, 18, 25, 29 | mplelbas 21422 | . 2 β’ (πΉ β π β (πΉ β (Baseβ(1o mPwSer π )) β§ πΉ finSupp 0 )) |
31 | 22, 23, 30 | sylanbrc 584 | 1 β’ (π β πΉ β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1542 β wcel 2107 {crab 3406 Vcvv 3447 β c0 4286 {csn 4590 class class class wbr 5109 β‘ccnv 5636 β cima 5640 βΆwf 6496 βcfv 6500 (class class class)co 7361 1oc1o 8409 βm cmap 8771 Fincfn 8889 finSupp cfsupp 9311 βcn 12161 β0cn0 12421 Basecbs 17091 0gc0g 17329 mPwSer cmps 21329 mPoly cmpl 21331 PwSer1cps1 21569 Poly1cpl1 21571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-cnex 11115 ax-resscn 11116 ax-1cn 11117 ax-icn 11118 ax-addcl 11119 ax-addrcl 11120 ax-mulcl 11121 ax-mulrcl 11122 ax-mulcom 11123 ax-addass 11124 ax-mulass 11125 ax-distr 11126 ax-i2m1 11127 ax-1ne0 11128 ax-1rid 11129 ax-rnegex 11130 ax-rrecex 11131 ax-cnre 11132 ax-pre-lttri 11133 ax-pre-lttrn 11134 ax-pre-ltadd 11135 ax-pre-mulgt0 11136 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-tp 4595 df-op 4597 df-uni 4870 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-of 7621 df-om 7807 df-1st 7925 df-2nd 7926 df-supp 8097 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-1o 8416 df-er 8654 df-map 8773 df-en 8890 df-dom 8891 df-sdom 8892 df-fin 8893 df-fsupp 9312 df-pnf 11199 df-mnf 11200 df-xr 11201 df-ltxr 11202 df-le 11203 df-sub 11395 df-neg 11396 df-nn 12162 df-2 12224 df-3 12225 df-4 12226 df-5 12227 df-6 12228 df-7 12229 df-8 12230 df-9 12231 df-n0 12422 df-z 12508 df-dec 12627 df-uz 12772 df-fz 13434 df-struct 17027 df-sets 17044 df-slot 17062 df-ndx 17074 df-base 17092 df-ress 17121 df-plusg 17154 df-mulr 17155 df-sca 17157 df-vsca 17158 df-tset 17160 df-ple 17161 df-psr 21334 df-mpl 21336 df-opsr 21338 df-psr1 21574 df-ply1 21576 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |