Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fply1 Structured version   Visualization version   GIF version

Theorem fply1 33549
Description: Conditions for a function to be a univariate polynomial. (Contributed by Thierry Arnoux, 19-Aug-2023.)
Hypotheses
Ref Expression
fply1.1 0 = (0g𝑅)
fply1.2 𝐵 = (Base‘𝑅)
fply1.3 𝑃 = (Base‘(Poly1𝑅))
fply1.4 (𝜑𝐹:(ℕ0m 1o)⟶𝐵)
fply1.5 (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
fply1 (𝜑𝐹𝑃)

Proof of Theorem fply1
StepHypRef Expression
1 fply1.4 . . . . 5 (𝜑𝐹:(ℕ0m 1o)⟶𝐵)
2 fply1.2 . . . . . . 7 𝐵 = (Base‘𝑅)
32fvexi 6934 . . . . . 6 𝐵 ∈ V
4 ovex 7481 . . . . . 6 (ℕ0m 1o) ∈ V
53, 4elmap 8929 . . . . 5 (𝐹 ∈ (𝐵m (ℕ0m 1o)) ↔ 𝐹:(ℕ0m 1o)⟶𝐵)
61, 5sylibr 234 . . . 4 (𝜑𝐹 ∈ (𝐵m (ℕ0m 1o)))
7 df1o2 8529 . . . . . . . . 9 1o = {∅}
8 snfi 9109 . . . . . . . . 9 {∅} ∈ Fin
97, 8eqeltri 2840 . . . . . . . 8 1o ∈ Fin
109a1i 11 . . . . . . 7 (𝑓 ∈ (ℕ0m 1o) → 1o ∈ Fin)
11 elmapi 8907 . . . . . . 7 (𝑓 ∈ (ℕ0m 1o) → 𝑓:1o⟶ℕ0)
1210, 11fisuppfi 9441 . . . . . 6 (𝑓 ∈ (ℕ0m 1o) → (𝑓 “ ℕ) ∈ Fin)
1312rabeqc 3456 . . . . 5 {𝑓 ∈ (ℕ0m 1o) ∣ (𝑓 “ ℕ) ∈ Fin} = (ℕ0m 1o)
1413oveq2i 7459 . . . 4 (𝐵m {𝑓 ∈ (ℕ0m 1o) ∣ (𝑓 “ ℕ) ∈ Fin}) = (𝐵m (ℕ0m 1o))
156, 14eleqtrrdi 2855 . . 3 (𝜑𝐹 ∈ (𝐵m {𝑓 ∈ (ℕ0m 1o) ∣ (𝑓 “ ℕ) ∈ Fin}))
16 eqid 2740 . . . 4 (1o mPwSer 𝑅) = (1o mPwSer 𝑅)
17 eqid 2740 . . . 4 {𝑓 ∈ (ℕ0m 1o) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 1o) ∣ (𝑓 “ ℕ) ∈ Fin}
18 eqid 2740 . . . 4 (Base‘(1o mPwSer 𝑅)) = (Base‘(1o mPwSer 𝑅))
19 1oex 8532 . . . . 5 1o ∈ V
2019a1i 11 . . . 4 (𝜑 → 1o ∈ V)
2116, 2, 17, 18, 20psrbas 21976 . . 3 (𝜑 → (Base‘(1o mPwSer 𝑅)) = (𝐵m {𝑓 ∈ (ℕ0m 1o) ∣ (𝑓 “ ℕ) ∈ Fin}))
2215, 21eleqtrrd 2847 . 2 (𝜑𝐹 ∈ (Base‘(1o mPwSer 𝑅)))
23 fply1.5 . 2 (𝜑𝐹 finSupp 0 )
24 eqid 2740 . . 3 (1o mPoly 𝑅) = (1o mPoly 𝑅)
25 fply1.1 . . 3 0 = (0g𝑅)
26 eqid 2740 . . . 4 (Poly1𝑅) = (Poly1𝑅)
27 fply1.3 . . . 4 𝑃 = (Base‘(Poly1𝑅))
2826, 27ply1bas 22217 . . 3 𝑃 = (Base‘(1o mPoly 𝑅))
2924, 16, 18, 25, 28mplelbas 22034 . 2 (𝐹𝑃 ↔ (𝐹 ∈ (Base‘(1o mPwSer 𝑅)) ∧ 𝐹 finSupp 0 ))
3022, 23, 29sylanbrc 582 1 (𝜑𝐹𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  c0 4352  {csn 4648   class class class wbr 5166  ccnv 5699  cima 5703  wf 6569  cfv 6573  (class class class)co 7448  1oc1o 8515  m cmap 8884  Fincfn 9003   finSupp cfsupp 9431  cn 12293  0cn0 12553  Basecbs 17258  0gc0g 17499   mPwSer cmps 21947   mPoly cmpl 21949  Poly1cpl1 22199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-tset 17330  df-ple 17331  df-psr 21952  df-mpl 21954  df-opsr 21956  df-psr1 22202  df-ply1 22204
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator