Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fply1 Structured version   Visualization version   GIF version

Theorem fply1 33521
Description: Conditions for a function to be a univariate polynomial. (Contributed by Thierry Arnoux, 19-Aug-2023.)
Hypotheses
Ref Expression
fply1.1 0 = (0g𝑅)
fply1.2 𝐵 = (Base‘𝑅)
fply1.3 𝑃 = (Base‘(Poly1𝑅))
fply1.4 (𝜑𝐹:(ℕ0m 1o)⟶𝐵)
fply1.5 (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
fply1 (𝜑𝐹𝑃)

Proof of Theorem fply1
StepHypRef Expression
1 fply1.4 . . . . 5 (𝜑𝐹:(ℕ0m 1o)⟶𝐵)
2 fply1.2 . . . . . . 7 𝐵 = (Base‘𝑅)
32fvexi 6836 . . . . . 6 𝐵 ∈ V
4 ovex 7379 . . . . . 6 (ℕ0m 1o) ∈ V
53, 4elmap 8795 . . . . 5 (𝐹 ∈ (𝐵m (ℕ0m 1o)) ↔ 𝐹:(ℕ0m 1o)⟶𝐵)
61, 5sylibr 234 . . . 4 (𝜑𝐹 ∈ (𝐵m (ℕ0m 1o)))
7 df1o2 8392 . . . . . . . . 9 1o = {∅}
8 snfi 8965 . . . . . . . . 9 {∅} ∈ Fin
97, 8eqeltri 2827 . . . . . . . 8 1o ∈ Fin
109a1i 11 . . . . . . 7 (𝑓 ∈ (ℕ0m 1o) → 1o ∈ Fin)
11 elmapi 8773 . . . . . . 7 (𝑓 ∈ (ℕ0m 1o) → 𝑓:1o⟶ℕ0)
1210, 11fisuppfi 9255 . . . . . 6 (𝑓 ∈ (ℕ0m 1o) → (𝑓 “ ℕ) ∈ Fin)
1312rabeqc 3407 . . . . 5 {𝑓 ∈ (ℕ0m 1o) ∣ (𝑓 “ ℕ) ∈ Fin} = (ℕ0m 1o)
1413oveq2i 7357 . . . 4 (𝐵m {𝑓 ∈ (ℕ0m 1o) ∣ (𝑓 “ ℕ) ∈ Fin}) = (𝐵m (ℕ0m 1o))
156, 14eleqtrrdi 2842 . . 3 (𝜑𝐹 ∈ (𝐵m {𝑓 ∈ (ℕ0m 1o) ∣ (𝑓 “ ℕ) ∈ Fin}))
16 eqid 2731 . . . 4 (1o mPwSer 𝑅) = (1o mPwSer 𝑅)
17 eqid 2731 . . . 4 {𝑓 ∈ (ℕ0m 1o) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 1o) ∣ (𝑓 “ ℕ) ∈ Fin}
18 eqid 2731 . . . 4 (Base‘(1o mPwSer 𝑅)) = (Base‘(1o mPwSer 𝑅))
19 1oex 8395 . . . . 5 1o ∈ V
2019a1i 11 . . . 4 (𝜑 → 1o ∈ V)
2116, 2, 17, 18, 20psrbas 21870 . . 3 (𝜑 → (Base‘(1o mPwSer 𝑅)) = (𝐵m {𝑓 ∈ (ℕ0m 1o) ∣ (𝑓 “ ℕ) ∈ Fin}))
2215, 21eleqtrrd 2834 . 2 (𝜑𝐹 ∈ (Base‘(1o mPwSer 𝑅)))
23 fply1.5 . 2 (𝜑𝐹 finSupp 0 )
24 eqid 2731 . . 3 (1o mPoly 𝑅) = (1o mPoly 𝑅)
25 fply1.1 . . 3 0 = (0g𝑅)
26 eqid 2731 . . . 4 (Poly1𝑅) = (Poly1𝑅)
27 fply1.3 . . . 4 𝑃 = (Base‘(Poly1𝑅))
2826, 27ply1bas 22107 . . 3 𝑃 = (Base‘(1o mPoly 𝑅))
2924, 16, 18, 25, 28mplelbas 21928 . 2 (𝐹𝑃 ↔ (𝐹 ∈ (Base‘(1o mPwSer 𝑅)) ∧ 𝐹 finSupp 0 ))
3022, 23, 29sylanbrc 583 1 (𝜑𝐹𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  c0 4280  {csn 4573   class class class wbr 5089  ccnv 5613  cima 5617  wf 6477  cfv 6481  (class class class)co 7346  1oc1o 8378  m cmap 8750  Fincfn 8869   finSupp cfsupp 9245  cn 12125  0cn0 12381  Basecbs 17120  0gc0g 17343   mPwSer cmps 21841   mPoly cmpl 21843  Poly1cpl1 22089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-tset 17180  df-ple 17181  df-psr 21846  df-mpl 21848  df-opsr 21850  df-psr1 22092  df-ply1 22094
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator