Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fply1 | Structured version Visualization version GIF version |
Description: Conditions for a function to be an univariate polynomial. (Contributed by Thierry Arnoux, 19-Aug-2023.) |
Ref | Expression |
---|---|
fply1.1 | ⊢ 0 = (0g‘𝑅) |
fply1.2 | ⊢ 𝐵 = (Base‘𝑅) |
fply1.3 | ⊢ 𝑃 = (Base‘(Poly1‘𝑅)) |
fply1.4 | ⊢ (𝜑 → 𝐹:(ℕ0 ↑m 1o)⟶𝐵) |
fply1.5 | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
Ref | Expression |
---|---|
fply1 | ⊢ (𝜑 → 𝐹 ∈ 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fply1.4 | . . . . 5 ⊢ (𝜑 → 𝐹:(ℕ0 ↑m 1o)⟶𝐵) | |
2 | fply1.2 | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
3 | 2 | fvexi 6839 | . . . . . 6 ⊢ 𝐵 ∈ V |
4 | ovex 7370 | . . . . . 6 ⊢ (ℕ0 ↑m 1o) ∈ V | |
5 | 3, 4 | elmap 8730 | . . . . 5 ⊢ (𝐹 ∈ (𝐵 ↑m (ℕ0 ↑m 1o)) ↔ 𝐹:(ℕ0 ↑m 1o)⟶𝐵) |
6 | 1, 5 | sylibr 233 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑m (ℕ0 ↑m 1o))) |
7 | df1o2 8374 | . . . . . . . . 9 ⊢ 1o = {∅} | |
8 | snfi 8909 | . . . . . . . . 9 ⊢ {∅} ∈ Fin | |
9 | 7, 8 | eqeltri 2833 | . . . . . . . 8 ⊢ 1o ∈ Fin |
10 | 9 | a1i 11 | . . . . . . 7 ⊢ (𝑓 ∈ (ℕ0 ↑m 1o) → 1o ∈ Fin) |
11 | elmapi 8708 | . . . . . . 7 ⊢ (𝑓 ∈ (ℕ0 ↑m 1o) → 𝑓:1o⟶ℕ0) | |
12 | 10, 11 | fisuppfi 9234 | . . . . . 6 ⊢ (𝑓 ∈ (ℕ0 ↑m 1o) → (◡𝑓 “ ℕ) ∈ Fin) |
13 | 12 | rabeqc 3415 | . . . . 5 ⊢ {𝑓 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑓 “ ℕ) ∈ Fin} = (ℕ0 ↑m 1o) |
14 | 13 | oveq2i 7348 | . . . 4 ⊢ (𝐵 ↑m {𝑓 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑓 “ ℕ) ∈ Fin}) = (𝐵 ↑m (ℕ0 ↑m 1o)) |
15 | 6, 14 | eleqtrrdi 2848 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑m {𝑓 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
16 | eqid 2736 | . . . 4 ⊢ (1o mPwSer 𝑅) = (1o mPwSer 𝑅) | |
17 | eqid 2736 | . . . 4 ⊢ {𝑓 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
18 | eqid 2736 | . . . 4 ⊢ (Base‘(1o mPwSer 𝑅)) = (Base‘(1o mPwSer 𝑅)) | |
19 | 1oex 8377 | . . . . 5 ⊢ 1o ∈ V | |
20 | 19 | a1i 11 | . . . 4 ⊢ (𝜑 → 1o ∈ V) |
21 | 16, 2, 17, 18, 20 | psrbas 21253 | . . 3 ⊢ (𝜑 → (Base‘(1o mPwSer 𝑅)) = (𝐵 ↑m {𝑓 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
22 | 15, 21 | eleqtrrd 2840 | . 2 ⊢ (𝜑 → 𝐹 ∈ (Base‘(1o mPwSer 𝑅))) |
23 | fply1.5 | . 2 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
24 | eqid 2736 | . . 3 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
25 | fply1.1 | . . 3 ⊢ 0 = (0g‘𝑅) | |
26 | eqid 2736 | . . . 4 ⊢ (Poly1‘𝑅) = (Poly1‘𝑅) | |
27 | eqid 2736 | . . . 4 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
28 | fply1.3 | . . . 4 ⊢ 𝑃 = (Base‘(Poly1‘𝑅)) | |
29 | 26, 27, 28 | ply1bas 21472 | . . 3 ⊢ 𝑃 = (Base‘(1o mPoly 𝑅)) |
30 | 24, 16, 18, 25, 29 | mplelbas 21305 | . 2 ⊢ (𝐹 ∈ 𝑃 ↔ (𝐹 ∈ (Base‘(1o mPwSer 𝑅)) ∧ 𝐹 finSupp 0 )) |
31 | 22, 23, 30 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐹 ∈ 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 {crab 3403 Vcvv 3441 ∅c0 4269 {csn 4573 class class class wbr 5092 ◡ccnv 5619 “ cima 5623 ⟶wf 6475 ‘cfv 6479 (class class class)co 7337 1oc1o 8360 ↑m cmap 8686 Fincfn 8804 finSupp cfsupp 9226 ℕcn 12074 ℕ0cn0 12334 Basecbs 17009 0gc0g 17247 mPwSer cmps 21213 mPoly cmpl 21215 PwSer1cps1 21452 Poly1cpl1 21454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-of 7595 df-om 7781 df-1st 7899 df-2nd 7900 df-supp 8048 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-er 8569 df-map 8688 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-fsupp 9227 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-3 12138 df-4 12139 df-5 12140 df-6 12141 df-7 12142 df-8 12143 df-9 12144 df-n0 12335 df-z 12421 df-dec 12539 df-uz 12684 df-fz 13341 df-struct 16945 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-ress 17039 df-plusg 17072 df-mulr 17073 df-sca 17075 df-vsca 17076 df-tset 17078 df-ple 17079 df-psr 21218 df-mpl 21220 df-opsr 21222 df-psr1 21457 df-ply1 21459 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |