Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fply1 Structured version   Visualization version   GIF version

Theorem fply1 33576
Description: Conditions for a function to be a univariate polynomial. (Contributed by Thierry Arnoux, 19-Aug-2023.)
Hypotheses
Ref Expression
fply1.1 0 = (0g𝑅)
fply1.2 𝐵 = (Base‘𝑅)
fply1.3 𝑃 = (Base‘(Poly1𝑅))
fply1.4 (𝜑𝐹:(ℕ0m 1o)⟶𝐵)
fply1.5 (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
fply1 (𝜑𝐹𝑃)

Proof of Theorem fply1
StepHypRef Expression
1 fply1.4 . . . . 5 (𝜑𝐹:(ℕ0m 1o)⟶𝐵)
2 fply1.2 . . . . . . 7 𝐵 = (Base‘𝑅)
32fvexi 6895 . . . . . 6 𝐵 ∈ V
4 ovex 7443 . . . . . 6 (ℕ0m 1o) ∈ V
53, 4elmap 8890 . . . . 5 (𝐹 ∈ (𝐵m (ℕ0m 1o)) ↔ 𝐹:(ℕ0m 1o)⟶𝐵)
61, 5sylibr 234 . . . 4 (𝜑𝐹 ∈ (𝐵m (ℕ0m 1o)))
7 df1o2 8492 . . . . . . . . 9 1o = {∅}
8 snfi 9062 . . . . . . . . 9 {∅} ∈ Fin
97, 8eqeltri 2831 . . . . . . . 8 1o ∈ Fin
109a1i 11 . . . . . . 7 (𝑓 ∈ (ℕ0m 1o) → 1o ∈ Fin)
11 elmapi 8868 . . . . . . 7 (𝑓 ∈ (ℕ0m 1o) → 𝑓:1o⟶ℕ0)
1210, 11fisuppfi 9388 . . . . . 6 (𝑓 ∈ (ℕ0m 1o) → (𝑓 “ ℕ) ∈ Fin)
1312rabeqc 3433 . . . . 5 {𝑓 ∈ (ℕ0m 1o) ∣ (𝑓 “ ℕ) ∈ Fin} = (ℕ0m 1o)
1413oveq2i 7421 . . . 4 (𝐵m {𝑓 ∈ (ℕ0m 1o) ∣ (𝑓 “ ℕ) ∈ Fin}) = (𝐵m (ℕ0m 1o))
156, 14eleqtrrdi 2846 . . 3 (𝜑𝐹 ∈ (𝐵m {𝑓 ∈ (ℕ0m 1o) ∣ (𝑓 “ ℕ) ∈ Fin}))
16 eqid 2736 . . . 4 (1o mPwSer 𝑅) = (1o mPwSer 𝑅)
17 eqid 2736 . . . 4 {𝑓 ∈ (ℕ0m 1o) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 1o) ∣ (𝑓 “ ℕ) ∈ Fin}
18 eqid 2736 . . . 4 (Base‘(1o mPwSer 𝑅)) = (Base‘(1o mPwSer 𝑅))
19 1oex 8495 . . . . 5 1o ∈ V
2019a1i 11 . . . 4 (𝜑 → 1o ∈ V)
2116, 2, 17, 18, 20psrbas 21898 . . 3 (𝜑 → (Base‘(1o mPwSer 𝑅)) = (𝐵m {𝑓 ∈ (ℕ0m 1o) ∣ (𝑓 “ ℕ) ∈ Fin}))
2215, 21eleqtrrd 2838 . 2 (𝜑𝐹 ∈ (Base‘(1o mPwSer 𝑅)))
23 fply1.5 . 2 (𝜑𝐹 finSupp 0 )
24 eqid 2736 . . 3 (1o mPoly 𝑅) = (1o mPoly 𝑅)
25 fply1.1 . . 3 0 = (0g𝑅)
26 eqid 2736 . . . 4 (Poly1𝑅) = (Poly1𝑅)
27 fply1.3 . . . 4 𝑃 = (Base‘(Poly1𝑅))
2826, 27ply1bas 22135 . . 3 𝑃 = (Base‘(1o mPoly 𝑅))
2924, 16, 18, 25, 28mplelbas 21956 . 2 (𝐹𝑃 ↔ (𝐹 ∈ (Base‘(1o mPwSer 𝑅)) ∧ 𝐹 finSupp 0 ))
3022, 23, 29sylanbrc 583 1 (𝜑𝐹𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3420  Vcvv 3464  c0 4313  {csn 4606   class class class wbr 5124  ccnv 5658  cima 5662  wf 6532  cfv 6536  (class class class)co 7410  1oc1o 8478  m cmap 8845  Fincfn 8964   finSupp cfsupp 9378  cn 12245  0cn0 12506  Basecbs 17233  0gc0g 17458   mPwSer cmps 21869   mPoly cmpl 21871  Poly1cpl1 22117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-tset 17295  df-ple 17296  df-psr 21874  df-mpl 21876  df-opsr 21878  df-psr1 22120  df-ply1 22122
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator