|   | Mathbox for Thierry Arnoux | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fply1 | Structured version Visualization version GIF version | ||
| Description: Conditions for a function to be a univariate polynomial. (Contributed by Thierry Arnoux, 19-Aug-2023.) | 
| Ref | Expression | 
|---|---|
| fply1.1 | ⊢ 0 = (0g‘𝑅) | 
| fply1.2 | ⊢ 𝐵 = (Base‘𝑅) | 
| fply1.3 | ⊢ 𝑃 = (Base‘(Poly1‘𝑅)) | 
| fply1.4 | ⊢ (𝜑 → 𝐹:(ℕ0 ↑m 1o)⟶𝐵) | 
| fply1.5 | ⊢ (𝜑 → 𝐹 finSupp 0 ) | 
| Ref | Expression | 
|---|---|
| fply1 | ⊢ (𝜑 → 𝐹 ∈ 𝑃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fply1.4 | . . . . 5 ⊢ (𝜑 → 𝐹:(ℕ0 ↑m 1o)⟶𝐵) | |
| 2 | fply1.2 | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | 2 | fvexi 6919 | . . . . . 6 ⊢ 𝐵 ∈ V | 
| 4 | ovex 7465 | . . . . . 6 ⊢ (ℕ0 ↑m 1o) ∈ V | |
| 5 | 3, 4 | elmap 8912 | . . . . 5 ⊢ (𝐹 ∈ (𝐵 ↑m (ℕ0 ↑m 1o)) ↔ 𝐹:(ℕ0 ↑m 1o)⟶𝐵) | 
| 6 | 1, 5 | sylibr 234 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑m (ℕ0 ↑m 1o))) | 
| 7 | df1o2 8514 | . . . . . . . . 9 ⊢ 1o = {∅} | |
| 8 | snfi 9084 | . . . . . . . . 9 ⊢ {∅} ∈ Fin | |
| 9 | 7, 8 | eqeltri 2836 | . . . . . . . 8 ⊢ 1o ∈ Fin | 
| 10 | 9 | a1i 11 | . . . . . . 7 ⊢ (𝑓 ∈ (ℕ0 ↑m 1o) → 1o ∈ Fin) | 
| 11 | elmapi 8890 | . . . . . . 7 ⊢ (𝑓 ∈ (ℕ0 ↑m 1o) → 𝑓:1o⟶ℕ0) | |
| 12 | 10, 11 | fisuppfi 9412 | . . . . . 6 ⊢ (𝑓 ∈ (ℕ0 ↑m 1o) → (◡𝑓 “ ℕ) ∈ Fin) | 
| 13 | 12 | rabeqc 3448 | . . . . 5 ⊢ {𝑓 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑓 “ ℕ) ∈ Fin} = (ℕ0 ↑m 1o) | 
| 14 | 13 | oveq2i 7443 | . . . 4 ⊢ (𝐵 ↑m {𝑓 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑓 “ ℕ) ∈ Fin}) = (𝐵 ↑m (ℕ0 ↑m 1o)) | 
| 15 | 6, 14 | eleqtrrdi 2851 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑m {𝑓 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑓 “ ℕ) ∈ Fin})) | 
| 16 | eqid 2736 | . . . 4 ⊢ (1o mPwSer 𝑅) = (1o mPwSer 𝑅) | |
| 17 | eqid 2736 | . . . 4 ⊢ {𝑓 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 18 | eqid 2736 | . . . 4 ⊢ (Base‘(1o mPwSer 𝑅)) = (Base‘(1o mPwSer 𝑅)) | |
| 19 | 1oex 8517 | . . . . 5 ⊢ 1o ∈ V | |
| 20 | 19 | a1i 11 | . . . 4 ⊢ (𝜑 → 1o ∈ V) | 
| 21 | 16, 2, 17, 18, 20 | psrbas 21954 | . . 3 ⊢ (𝜑 → (Base‘(1o mPwSer 𝑅)) = (𝐵 ↑m {𝑓 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑓 “ ℕ) ∈ Fin})) | 
| 22 | 15, 21 | eleqtrrd 2843 | . 2 ⊢ (𝜑 → 𝐹 ∈ (Base‘(1o mPwSer 𝑅))) | 
| 23 | fply1.5 | . 2 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
| 24 | eqid 2736 | . . 3 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
| 25 | fply1.1 | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 26 | eqid 2736 | . . . 4 ⊢ (Poly1‘𝑅) = (Poly1‘𝑅) | |
| 27 | fply1.3 | . . . 4 ⊢ 𝑃 = (Base‘(Poly1‘𝑅)) | |
| 28 | 26, 27 | ply1bas 22197 | . . 3 ⊢ 𝑃 = (Base‘(1o mPoly 𝑅)) | 
| 29 | 24, 16, 18, 25, 28 | mplelbas 22012 | . 2 ⊢ (𝐹 ∈ 𝑃 ↔ (𝐹 ∈ (Base‘(1o mPwSer 𝑅)) ∧ 𝐹 finSupp 0 )) | 
| 30 | 22, 23, 29 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐹 ∈ 𝑃) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {crab 3435 Vcvv 3479 ∅c0 4332 {csn 4625 class class class wbr 5142 ◡ccnv 5683 “ cima 5687 ⟶wf 6556 ‘cfv 6560 (class class class)co 7432 1oc1o 8500 ↑m cmap 8867 Fincfn 8986 finSupp cfsupp 9402 ℕcn 12267 ℕ0cn0 12528 Basecbs 17248 0gc0g 17485 mPwSer cmps 21925 mPoly cmpl 21927 Poly1cpl1 22179 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-of 7698 df-om 7889 df-1st 8015 df-2nd 8016 df-supp 8187 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-map 8869 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-fsupp 9403 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-dec 12736 df-uz 12880 df-fz 13549 df-struct 17185 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-tset 17317 df-ple 17318 df-psr 21930 df-mpl 21932 df-opsr 21934 df-psr1 22182 df-ply1 22184 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |