Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fply1 Structured version   Visualization version   GIF version

Theorem fply1 30985
Description: Conditions for a function to be an univariate polynomial. (Contributed by Thierry Arnoux, 19-Aug-2023.)
Hypotheses
Ref Expression
fply1.1 0 = (0g𝑅)
fply1.2 𝐵 = (Base‘𝑅)
fply1.3 𝑃 = (Base‘(Poly1𝑅))
fply1.4 (𝜑𝐹:(ℕ0m 1o)⟶𝐵)
fply1.5 (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
fply1 (𝜑𝐹𝑃)

Proof of Theorem fply1
StepHypRef Expression
1 fply1.4 . . . . 5 (𝜑𝐹:(ℕ0m 1o)⟶𝐵)
2 fply1.2 . . . . . . 7 𝐵 = (Base‘𝑅)
32fvexi 6663 . . . . . 6 𝐵 ∈ V
4 ovex 7172 . . . . . 6 (ℕ0m 1o) ∈ V
53, 4elmap 8422 . . . . 5 (𝐹 ∈ (𝐵m (ℕ0m 1o)) ↔ 𝐹:(ℕ0m 1o)⟶𝐵)
61, 5sylibr 237 . . . 4 (𝜑𝐹 ∈ (𝐵m (ℕ0m 1o)))
7 df1o2 8103 . . . . . . . . 9 1o = {∅}
8 snfi 8581 . . . . . . . . 9 {∅} ∈ Fin
97, 8eqeltri 2889 . . . . . . . 8 1o ∈ Fin
109a1i 11 . . . . . . 7 (𝑓 ∈ (ℕ0m 1o) → 1o ∈ Fin)
11 elmapi 8415 . . . . . . 7 (𝑓 ∈ (ℕ0m 1o) → 𝑓:1o⟶ℕ0)
1210, 11fisuppfi 8829 . . . . . 6 (𝑓 ∈ (ℕ0m 1o) → (𝑓 “ ℕ) ∈ Fin)
1312rabeqc 3629 . . . . 5 {𝑓 ∈ (ℕ0m 1o) ∣ (𝑓 “ ℕ) ∈ Fin} = (ℕ0m 1o)
1413oveq2i 7150 . . . 4 (𝐵m {𝑓 ∈ (ℕ0m 1o) ∣ (𝑓 “ ℕ) ∈ Fin}) = (𝐵m (ℕ0m 1o))
156, 14eleqtrrdi 2904 . . 3 (𝜑𝐹 ∈ (𝐵m {𝑓 ∈ (ℕ0m 1o) ∣ (𝑓 “ ℕ) ∈ Fin}))
16 eqid 2801 . . . 4 (1o mPwSer 𝑅) = (1o mPwSer 𝑅)
17 eqid 2801 . . . 4 {𝑓 ∈ (ℕ0m 1o) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 1o) ∣ (𝑓 “ ℕ) ∈ Fin}
18 eqid 2801 . . . 4 (Base‘(1o mPwSer 𝑅)) = (Base‘(1o mPwSer 𝑅))
19 1oex 8097 . . . . 5 1o ∈ V
2019a1i 11 . . . 4 (𝜑 → 1o ∈ V)
2116, 2, 17, 18, 20psrbas 20619 . . 3 (𝜑 → (Base‘(1o mPwSer 𝑅)) = (𝐵m {𝑓 ∈ (ℕ0m 1o) ∣ (𝑓 “ ℕ) ∈ Fin}))
2215, 21eleqtrrd 2896 . 2 (𝜑𝐹 ∈ (Base‘(1o mPwSer 𝑅)))
23 fply1.5 . 2 (𝜑𝐹 finSupp 0 )
24 eqid 2801 . . 3 (1o mPoly 𝑅) = (1o mPoly 𝑅)
25 fply1.1 . . 3 0 = (0g𝑅)
26 eqid 2801 . . . 4 (Poly1𝑅) = (Poly1𝑅)
27 eqid 2801 . . . 4 (PwSer1𝑅) = (PwSer1𝑅)
28 fply1.3 . . . 4 𝑃 = (Base‘(Poly1𝑅))
2926, 27, 28ply1bas 20827 . . 3 𝑃 = (Base‘(1o mPoly 𝑅))
3024, 16, 18, 25, 29mplelbas 20671 . 2 (𝐹𝑃 ↔ (𝐹 ∈ (Base‘(1o mPwSer 𝑅)) ∧ 𝐹 finSupp 0 ))
3122, 23, 30sylanbrc 586 1 (𝜑𝐹𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2112  {crab 3113  Vcvv 3444  c0 4246  {csn 4528   class class class wbr 5033  ccnv 5522  cima 5526  wf 6324  cfv 6328  (class class class)co 7139  1oc1o 8082  m cmap 8393  Fincfn 8496   finSupp cfsupp 8821  cn 11629  0cn0 11889  Basecbs 16478  0gc0g 16708   mPwSer cmps 20592   mPoly cmpl 20594  PwSer1cps1 20807  Poly1cpl1 20809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12890  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-sca 16576  df-vsca 16577  df-tset 16579  df-ple 16580  df-psr 20597  df-mpl 20599  df-opsr 20601  df-psr1 20812  df-ply1 20814
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator