Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ipoglb0 Structured version   Visualization version   GIF version

Theorem ipoglb0 46249
Description: The GLB of the empty set is the union of the base. (Contributed by Zhi Wang, 30-Sep-2024.)
Hypotheses
Ref Expression
ipoglb0.i 𝐼 = (toInc‘𝐹)
ipoglb0.g (𝜑𝐺 = (glb‘𝐼))
ipoglb0.f (𝜑 𝐹𝐹)
Assertion
Ref Expression
ipoglb0 (𝜑 → (𝐺‘∅) = 𝐹)

Proof of Theorem ipoglb0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ipoglb0.i . 2 𝐼 = (toInc‘𝐹)
2 ipoglb0.f . . 3 (𝜑 𝐹𝐹)
3 uniexr 7607 . . 3 ( 𝐹𝐹𝐹 ∈ V)
42, 3syl 17 . 2 (𝜑𝐹 ∈ V)
5 0ss 4336 . . 3 ∅ ⊆ 𝐹
65a1i 11 . 2 (𝜑 → ∅ ⊆ 𝐹)
7 ipoglb0.g . 2 (𝜑𝐺 = (glb‘𝐼))
8 ssv 3950 . . . . . . . 8 𝑥 ⊆ V
9 int0 4899 . . . . . . . 8 ∅ = V
108, 9sseqtrri 3963 . . . . . . 7 𝑥
1110a1i 11 . . . . . 6 (𝑥𝐹𝑥 ∅)
1211rabeqc 3624 . . . . 5 {𝑥𝐹𝑥 ∅} = 𝐹
1312unieqi 4858 . . . 4 {𝑥𝐹𝑥 ∅} = 𝐹
1413eqcomi 2749 . . 3 𝐹 = {𝑥𝐹𝑥 ∅}
1514a1i 11 . 2 (𝜑 𝐹 = {𝑥𝐹𝑥 ∅})
161, 4, 6, 7, 15, 2ipoglb 46246 1 (𝜑 → (𝐺‘∅) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2110  {crab 3070  Vcvv 3431  wss 3892  c0 4262   cuni 4845   cint 4885  cfv 6432  glbcglb 18026  toInccipo 18243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12437  df-uz 12582  df-fz 13239  df-struct 16846  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-tset 16979  df-ple 16980  df-ocomp 16981  df-odu 18003  df-proset 18011  df-poset 18029  df-lub 18062  df-glb 18063  df-ipo 18244
This theorem is referenced by:  toplatglb0  46254
  Copyright terms: Public domain W3C validator