Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ipoglb0 | Structured version Visualization version GIF version |
Description: The GLB of the empty set is the union of the base. (Contributed by Zhi Wang, 30-Sep-2024.) |
Ref | Expression |
---|---|
ipoglb0.i | ⊢ 𝐼 = (toInc‘𝐹) |
ipoglb0.g | ⊢ (𝜑 → 𝐺 = (glb‘𝐼)) |
ipoglb0.f | ⊢ (𝜑 → ∪ 𝐹 ∈ 𝐹) |
Ref | Expression |
---|---|
ipoglb0 | ⊢ (𝜑 → (𝐺‘∅) = ∪ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ipoglb0.i | . 2 ⊢ 𝐼 = (toInc‘𝐹) | |
2 | ipoglb0.f | . . 3 ⊢ (𝜑 → ∪ 𝐹 ∈ 𝐹) | |
3 | uniexr 7613 | . . 3 ⊢ (∪ 𝐹 ∈ 𝐹 → 𝐹 ∈ V) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → 𝐹 ∈ V) |
5 | 0ss 4330 | . . 3 ⊢ ∅ ⊆ 𝐹 | |
6 | 5 | a1i 11 | . 2 ⊢ (𝜑 → ∅ ⊆ 𝐹) |
7 | ipoglb0.g | . 2 ⊢ (𝜑 → 𝐺 = (glb‘𝐼)) | |
8 | ssv 3945 | . . . . . . . 8 ⊢ 𝑥 ⊆ V | |
9 | int0 4893 | . . . . . . . 8 ⊢ ∩ ∅ = V | |
10 | 8, 9 | sseqtrri 3958 | . . . . . . 7 ⊢ 𝑥 ⊆ ∩ ∅ |
11 | 10 | a1i 11 | . . . . . 6 ⊢ (𝑥 ∈ 𝐹 → 𝑥 ⊆ ∩ ∅) |
12 | 11 | rabeqc 3622 | . . . . 5 ⊢ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ ∅} = 𝐹 |
13 | 12 | unieqi 4852 | . . . 4 ⊢ ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ ∅} = ∪ 𝐹 |
14 | 13 | eqcomi 2747 | . . 3 ⊢ ∪ 𝐹 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ ∅} |
15 | 14 | a1i 11 | . 2 ⊢ (𝜑 → ∪ 𝐹 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ ∅}) |
16 | 1, 4, 6, 7, 15, 2 | ipoglb 46277 | 1 ⊢ (𝜑 → (𝐺‘∅) = ∪ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 {crab 3068 Vcvv 3432 ⊆ wss 3887 ∅c0 4256 ∪ cuni 4839 ∩ cint 4879 ‘cfv 6433 glbcglb 18028 toInccipo 18245 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-tset 16981 df-ple 16982 df-ocomp 16983 df-odu 18005 df-proset 18013 df-poset 18031 df-lub 18064 df-glb 18065 df-ipo 18246 |
This theorem is referenced by: toplatglb0 46285 |
Copyright terms: Public domain | W3C validator |