MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlksnwwlknvbij Structured version   Visualization version   GIF version

Theorem wlksnwwlknvbij 29758
Description: There is a bijection between the set of walks of a fixed length and the set of walks represented by words of the same length and starting at the same vertex. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 5-Aug-2022.)
Assertion
Ref Expression
wlksnwwlknvbij ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) β†’ βˆƒπ‘“ 𝑓:{𝑝 ∈ (Walksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ ((2nd β€˜π‘)β€˜0) = 𝑋)}–1-1-ontoβ†’{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋})
Distinct variable groups:   𝑓,𝐺,𝑝,𝑀   𝑓,𝑁,𝑝,𝑀   𝑓,𝑋,𝑝,𝑀

Proof of Theorem wlksnwwlknvbij
Dummy variable π‘ž is distinct from all other variables.
StepHypRef Expression
1 fvex 6903 . . . . 5 (Walksβ€˜πΊ) ∈ V
21mptrabex 7231 . . . 4 (𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ↦ (2nd β€˜π‘)) ∈ V
32resex 6029 . . 3 ((𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ↦ (2nd β€˜π‘)) β†Ύ {𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}) ∈ V
4 eqid 2725 . . . 4 (𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ↦ (2nd β€˜π‘)) = (𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ↦ (2nd β€˜π‘))
5 eqid 2725 . . . . 5 {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} = {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁}
6 eqid 2725 . . . . 5 (𝑁 WWalksN 𝐺) = (𝑁 WWalksN 𝐺)
75, 6, 4wlknwwlksnbij 29738 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) β†’ (𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ↦ (2nd β€˜π‘)):{π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁}–1-1-ontoβ†’(𝑁 WWalksN 𝐺))
8 fveq1 6889 . . . . . 6 (𝑀 = (2nd β€˜π‘) β†’ (π‘€β€˜0) = ((2nd β€˜π‘)β€˜0))
98eqeq1d 2727 . . . . 5 (𝑀 = (2nd β€˜π‘) β†’ ((π‘€β€˜0) = 𝑋 ↔ ((2nd β€˜π‘)β€˜0) = 𝑋))
1093ad2ant3 1132 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) ∧ 𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∧ 𝑀 = (2nd β€˜π‘)) β†’ ((π‘€β€˜0) = 𝑋 ↔ ((2nd β€˜π‘)β€˜0) = 𝑋))
114, 7, 10f1oresrab 7130 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) β†’ ((𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ↦ (2nd β€˜π‘)) β†Ύ {𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}):{𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}–1-1-ontoβ†’{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋})
12 f1oeq1 6820 . . . 4 (𝑓 = ((𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ↦ (2nd β€˜π‘)) β†Ύ {𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}) β†’ (𝑓:{𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}–1-1-ontoβ†’{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋} ↔ ((𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ↦ (2nd β€˜π‘)) β†Ύ {𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}):{𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}–1-1-ontoβ†’{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋}))
1312spcegv 3578 . . 3 (((𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ↦ (2nd β€˜π‘)) β†Ύ {𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}) ∈ V β†’ (((𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ↦ (2nd β€˜π‘)) β†Ύ {𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}):{𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}–1-1-ontoβ†’{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋} β†’ βˆƒπ‘“ 𝑓:{𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}–1-1-ontoβ†’{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋}))
143, 11, 13mpsyl 68 . 2 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) β†’ βˆƒπ‘“ 𝑓:{𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}–1-1-ontoβ†’{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋})
15 2fveq3 6895 . . . . . . 7 (𝑝 = π‘ž β†’ (β™―β€˜(1st β€˜π‘)) = (β™―β€˜(1st β€˜π‘ž)))
1615eqeq1d 2727 . . . . . 6 (𝑝 = π‘ž β†’ ((β™―β€˜(1st β€˜π‘)) = 𝑁 ↔ (β™―β€˜(1st β€˜π‘ž)) = 𝑁))
1716rabrabi 3438 . . . . 5 {𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋} = {𝑝 ∈ (Walksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ ((2nd β€˜π‘)β€˜0) = 𝑋)}
1817eqcomi 2734 . . . 4 {𝑝 ∈ (Walksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ ((2nd β€˜π‘)β€˜0) = 𝑋)} = {𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}
19 f1oeq2 6821 . . . 4 ({𝑝 ∈ (Walksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ ((2nd β€˜π‘)β€˜0) = 𝑋)} = {𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋} β†’ (𝑓:{𝑝 ∈ (Walksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ ((2nd β€˜π‘)β€˜0) = 𝑋)}–1-1-ontoβ†’{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋} ↔ 𝑓:{𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}–1-1-ontoβ†’{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋}))
2018, 19mp1i 13 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) β†’ (𝑓:{𝑝 ∈ (Walksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ ((2nd β€˜π‘)β€˜0) = 𝑋)}–1-1-ontoβ†’{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋} ↔ 𝑓:{𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}–1-1-ontoβ†’{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋}))
2120exbidv 1916 . 2 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) β†’ (βˆƒπ‘“ 𝑓:{𝑝 ∈ (Walksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ ((2nd β€˜π‘)β€˜0) = 𝑋)}–1-1-ontoβ†’{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋} ↔ βˆƒπ‘“ 𝑓:{𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}–1-1-ontoβ†’{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋}))
2214, 21mpbird 256 1 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) β†’ βˆƒπ‘“ 𝑓:{𝑝 ∈ (Walksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ ((2nd β€˜π‘)β€˜0) = 𝑋)}–1-1-ontoβ†’{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1533  βˆƒwex 1773   ∈ wcel 2098  {crab 3419  Vcvv 3463   ↦ cmpt 5227   β†Ύ cres 5675  β€“1-1-ontoβ†’wf1o 6542  β€˜cfv 6543  (class class class)co 7413  1st c1st 7985  2nd c2nd 7986  0cc0 11133  β„•0cn0 12497  β™―chash 14316  USPGraphcuspgr 29000  Walkscwlks 29449   WWalksN cwwlksn 29676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ifp 1061  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8718  df-map 8840  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-dju 9919  df-card 9957  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-2 12300  df-n0 12498  df-xnn0 12570  df-z 12584  df-uz 12848  df-fz 13512  df-fzo 13655  df-hash 14317  df-word 14492  df-edg 28900  df-uhgr 28910  df-upgr 28934  df-uspgr 29002  df-wlks 29452  df-wwlks 29680  df-wwlksn 29681
This theorem is referenced by:  rusgrnumwlkg  29827
  Copyright terms: Public domain W3C validator