MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlksnwwlknvbij Structured version   Visualization version   GIF version

Theorem wlksnwwlknvbij 29706
Description: There is a bijection between the set of walks of a fixed length and the set of walks represented by words of the same length and starting at the same vertex. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 5-Aug-2022.)
Assertion
Ref Expression
wlksnwwlknvbij ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) β†’ βˆƒπ‘“ 𝑓:{𝑝 ∈ (Walksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ ((2nd β€˜π‘)β€˜0) = 𝑋)}–1-1-ontoβ†’{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋})
Distinct variable groups:   𝑓,𝐺,𝑝,𝑀   𝑓,𝑁,𝑝,𝑀   𝑓,𝑋,𝑝,𝑀

Proof of Theorem wlksnwwlknvbij
Dummy variable π‘ž is distinct from all other variables.
StepHypRef Expression
1 fvex 6904 . . . . 5 (Walksβ€˜πΊ) ∈ V
21mptrabex 7231 . . . 4 (𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ↦ (2nd β€˜π‘)) ∈ V
32resex 6027 . . 3 ((𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ↦ (2nd β€˜π‘)) β†Ύ {𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}) ∈ V
4 eqid 2727 . . . 4 (𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ↦ (2nd β€˜π‘)) = (𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ↦ (2nd β€˜π‘))
5 eqid 2727 . . . . 5 {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} = {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁}
6 eqid 2727 . . . . 5 (𝑁 WWalksN 𝐺) = (𝑁 WWalksN 𝐺)
75, 6, 4wlknwwlksnbij 29686 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) β†’ (𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ↦ (2nd β€˜π‘)):{π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁}–1-1-ontoβ†’(𝑁 WWalksN 𝐺))
8 fveq1 6890 . . . . . 6 (𝑀 = (2nd β€˜π‘) β†’ (π‘€β€˜0) = ((2nd β€˜π‘)β€˜0))
98eqeq1d 2729 . . . . 5 (𝑀 = (2nd β€˜π‘) β†’ ((π‘€β€˜0) = 𝑋 ↔ ((2nd β€˜π‘)β€˜0) = 𝑋))
1093ad2ant3 1133 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) ∧ 𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∧ 𝑀 = (2nd β€˜π‘)) β†’ ((π‘€β€˜0) = 𝑋 ↔ ((2nd β€˜π‘)β€˜0) = 𝑋))
114, 7, 10f1oresrab 7130 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) β†’ ((𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ↦ (2nd β€˜π‘)) β†Ύ {𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}):{𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}–1-1-ontoβ†’{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋})
12 f1oeq1 6821 . . . 4 (𝑓 = ((𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ↦ (2nd β€˜π‘)) β†Ύ {𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}) β†’ (𝑓:{𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}–1-1-ontoβ†’{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋} ↔ ((𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ↦ (2nd β€˜π‘)) β†Ύ {𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}):{𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}–1-1-ontoβ†’{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋}))
1312spcegv 3582 . . 3 (((𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ↦ (2nd β€˜π‘)) β†Ύ {𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}) ∈ V β†’ (((𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ↦ (2nd β€˜π‘)) β†Ύ {𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}):{𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}–1-1-ontoβ†’{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋} β†’ βˆƒπ‘“ 𝑓:{𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}–1-1-ontoβ†’{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋}))
143, 11, 13mpsyl 68 . 2 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) β†’ βˆƒπ‘“ 𝑓:{𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}–1-1-ontoβ†’{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋})
15 2fveq3 6896 . . . . . . 7 (𝑝 = π‘ž β†’ (β™―β€˜(1st β€˜π‘)) = (β™―β€˜(1st β€˜π‘ž)))
1615eqeq1d 2729 . . . . . 6 (𝑝 = π‘ž β†’ ((β™―β€˜(1st β€˜π‘)) = 𝑁 ↔ (β™―β€˜(1st β€˜π‘ž)) = 𝑁))
1716rabrabi 3445 . . . . 5 {𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋} = {𝑝 ∈ (Walksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ ((2nd β€˜π‘)β€˜0) = 𝑋)}
1817eqcomi 2736 . . . 4 {𝑝 ∈ (Walksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ ((2nd β€˜π‘)β€˜0) = 𝑋)} = {𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}
19 f1oeq2 6822 . . . 4 ({𝑝 ∈ (Walksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ ((2nd β€˜π‘)β€˜0) = 𝑋)} = {𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋} β†’ (𝑓:{𝑝 ∈ (Walksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ ((2nd β€˜π‘)β€˜0) = 𝑋)}–1-1-ontoβ†’{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋} ↔ 𝑓:{𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}–1-1-ontoβ†’{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋}))
2018, 19mp1i 13 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) β†’ (𝑓:{𝑝 ∈ (Walksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ ((2nd β€˜π‘)β€˜0) = 𝑋)}–1-1-ontoβ†’{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋} ↔ 𝑓:{𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}–1-1-ontoβ†’{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋}))
2120exbidv 1917 . 2 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) β†’ (βˆƒπ‘“ 𝑓:{𝑝 ∈ (Walksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ ((2nd β€˜π‘)β€˜0) = 𝑋)}–1-1-ontoβ†’{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋} ↔ βˆƒπ‘“ 𝑓:{𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}–1-1-ontoβ†’{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋}))
2214, 21mpbird 257 1 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) β†’ βˆƒπ‘“ 𝑓:{𝑝 ∈ (Walksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ ((2nd β€˜π‘)β€˜0) = 𝑋)}–1-1-ontoβ†’{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1534  βˆƒwex 1774   ∈ wcel 2099  {crab 3427  Vcvv 3469   ↦ cmpt 5225   β†Ύ cres 5674  β€“1-1-ontoβ†’wf1o 6541  β€˜cfv 6542  (class class class)co 7414  1st c1st 7985  2nd c2nd 7986  0cc0 11130  β„•0cn0 12494  β™―chash 14313  USPGraphcuspgr 28948  Walkscwlks 29397   WWalksN cwwlksn 29624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-ifp 1062  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8718  df-map 8838  df-pm 8839  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-dju 9916  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-2 12297  df-n0 12495  df-xnn0 12567  df-z 12581  df-uz 12845  df-fz 13509  df-fzo 13652  df-hash 14314  df-word 14489  df-edg 28848  df-uhgr 28858  df-upgr 28882  df-uspgr 28950  df-wlks 29400  df-wwlks 29628  df-wwlksn 29629
This theorem is referenced by:  rusgrnumwlkg  29775
  Copyright terms: Public domain W3C validator