| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | fvex 6919 | . . . . 5
⊢
(Walks‘𝐺)
∈ V | 
| 2 | 1 | mptrabex 7245 | . . . 4
⊢ (𝑝 ∈ {𝑞 ∈ (Walks‘𝐺) ∣ (♯‘(1st
‘𝑞)) = 𝑁} ↦ (2nd
‘𝑝)) ∈
V | 
| 3 | 2 | resex 6047 | . . 3
⊢ ((𝑝 ∈ {𝑞 ∈ (Walks‘𝐺) ∣ (♯‘(1st
‘𝑞)) = 𝑁} ↦ (2nd
‘𝑝)) ↾ {𝑝 ∈ {𝑞 ∈ (Walks‘𝐺) ∣ (♯‘(1st
‘𝑞)) = 𝑁} ∣ ((2nd
‘𝑝)‘0) = 𝑋}) ∈ V | 
| 4 |  | eqid 2737 | . . . 4
⊢ (𝑝 ∈ {𝑞 ∈ (Walks‘𝐺) ∣ (♯‘(1st
‘𝑞)) = 𝑁} ↦ (2nd
‘𝑝)) = (𝑝 ∈ {𝑞 ∈ (Walks‘𝐺) ∣ (♯‘(1st
‘𝑞)) = 𝑁} ↦ (2nd
‘𝑝)) | 
| 5 |  | eqid 2737 | . . . . 5
⊢ {𝑞 ∈ (Walks‘𝐺) ∣
(♯‘(1st ‘𝑞)) = 𝑁} = {𝑞 ∈ (Walks‘𝐺) ∣ (♯‘(1st
‘𝑞)) = 𝑁} | 
| 6 |  | eqid 2737 | . . . . 5
⊢ (𝑁 WWalksN 𝐺) = (𝑁 WWalksN 𝐺) | 
| 7 | 5, 6, 4 | wlknwwlksnbij 29908 | . . . 4
⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0)
→ (𝑝 ∈ {𝑞 ∈ (Walks‘𝐺) ∣
(♯‘(1st ‘𝑞)) = 𝑁} ↦ (2nd ‘𝑝)):{𝑞 ∈ (Walks‘𝐺) ∣ (♯‘(1st
‘𝑞)) = 𝑁}–1-1-onto→(𝑁 WWalksN 𝐺)) | 
| 8 |  | fveq1 6905 | . . . . . 6
⊢ (𝑤 = (2nd ‘𝑝) → (𝑤‘0) = ((2nd ‘𝑝)‘0)) | 
| 9 | 8 | eqeq1d 2739 | . . . . 5
⊢ (𝑤 = (2nd ‘𝑝) → ((𝑤‘0) = 𝑋 ↔ ((2nd ‘𝑝)‘0) = 𝑋)) | 
| 10 | 9 | 3ad2ant3 1136 | . . . 4
⊢ (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0)
∧ 𝑝 ∈ {𝑞 ∈ (Walks‘𝐺) ∣
(♯‘(1st ‘𝑞)) = 𝑁} ∧ 𝑤 = (2nd ‘𝑝)) → ((𝑤‘0) = 𝑋 ↔ ((2nd ‘𝑝)‘0) = 𝑋)) | 
| 11 | 4, 7, 10 | f1oresrab 7147 | . . 3
⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0)
→ ((𝑝 ∈ {𝑞 ∈ (Walks‘𝐺) ∣
(♯‘(1st ‘𝑞)) = 𝑁} ↦ (2nd ‘𝑝)) ↾ {𝑝 ∈ {𝑞 ∈ (Walks‘𝐺) ∣ (♯‘(1st
‘𝑞)) = 𝑁} ∣ ((2nd
‘𝑝)‘0) = 𝑋}):{𝑝 ∈ {𝑞 ∈ (Walks‘𝐺) ∣ (♯‘(1st
‘𝑞)) = 𝑁} ∣ ((2nd
‘𝑝)‘0) = 𝑋}–1-1-onto→{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) | 
| 12 |  | f1oeq1 6836 | . . . 4
⊢ (𝑓 = ((𝑝 ∈ {𝑞 ∈ (Walks‘𝐺) ∣ (♯‘(1st
‘𝑞)) = 𝑁} ↦ (2nd
‘𝑝)) ↾ {𝑝 ∈ {𝑞 ∈ (Walks‘𝐺) ∣ (♯‘(1st
‘𝑞)) = 𝑁} ∣ ((2nd
‘𝑝)‘0) = 𝑋}) → (𝑓:{𝑝 ∈ {𝑞 ∈ (Walks‘𝐺) ∣ (♯‘(1st
‘𝑞)) = 𝑁} ∣ ((2nd
‘𝑝)‘0) = 𝑋}–1-1-onto→{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ↔ ((𝑝 ∈ {𝑞 ∈ (Walks‘𝐺) ∣ (♯‘(1st
‘𝑞)) = 𝑁} ↦ (2nd
‘𝑝)) ↾ {𝑝 ∈ {𝑞 ∈ (Walks‘𝐺) ∣ (♯‘(1st
‘𝑞)) = 𝑁} ∣ ((2nd
‘𝑝)‘0) = 𝑋}):{𝑝 ∈ {𝑞 ∈ (Walks‘𝐺) ∣ (♯‘(1st
‘𝑞)) = 𝑁} ∣ ((2nd
‘𝑝)‘0) = 𝑋}–1-1-onto→{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})) | 
| 13 | 12 | spcegv 3597 | . . 3
⊢ (((𝑝 ∈ {𝑞 ∈ (Walks‘𝐺) ∣ (♯‘(1st
‘𝑞)) = 𝑁} ↦ (2nd
‘𝑝)) ↾ {𝑝 ∈ {𝑞 ∈ (Walks‘𝐺) ∣ (♯‘(1st
‘𝑞)) = 𝑁} ∣ ((2nd
‘𝑝)‘0) = 𝑋}) ∈ V → (((𝑝 ∈ {𝑞 ∈ (Walks‘𝐺) ∣ (♯‘(1st
‘𝑞)) = 𝑁} ↦ (2nd
‘𝑝)) ↾ {𝑝 ∈ {𝑞 ∈ (Walks‘𝐺) ∣ (♯‘(1st
‘𝑞)) = 𝑁} ∣ ((2nd
‘𝑝)‘0) = 𝑋}):{𝑝 ∈ {𝑞 ∈ (Walks‘𝐺) ∣ (♯‘(1st
‘𝑞)) = 𝑁} ∣ ((2nd
‘𝑝)‘0) = 𝑋}–1-1-onto→{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} → ∃𝑓 𝑓:{𝑝 ∈ {𝑞 ∈ (Walks‘𝐺) ∣ (♯‘(1st
‘𝑞)) = 𝑁} ∣ ((2nd
‘𝑝)‘0) = 𝑋}–1-1-onto→{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})) | 
| 14 | 3, 11, 13 | mpsyl 68 | . 2
⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0)
→ ∃𝑓 𝑓:{𝑝 ∈ {𝑞 ∈ (Walks‘𝐺) ∣ (♯‘(1st
‘𝑞)) = 𝑁} ∣ ((2nd
‘𝑝)‘0) = 𝑋}–1-1-onto→{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) | 
| 15 |  | 2fveq3 6911 | . . . . . . 7
⊢ (𝑝 = 𝑞 → (♯‘(1st
‘𝑝)) =
(♯‘(1st ‘𝑞))) | 
| 16 | 15 | eqeq1d 2739 | . . . . . 6
⊢ (𝑝 = 𝑞 → ((♯‘(1st
‘𝑝)) = 𝑁 ↔
(♯‘(1st ‘𝑞)) = 𝑁)) | 
| 17 | 16 | rabrabi 3456 | . . . . 5
⊢ {𝑝 ∈ {𝑞 ∈ (Walks‘𝐺) ∣ (♯‘(1st
‘𝑞)) = 𝑁} ∣ ((2nd
‘𝑝)‘0) = 𝑋} = {𝑝 ∈ (Walks‘𝐺) ∣ ((♯‘(1st
‘𝑝)) = 𝑁 ∧ ((2nd
‘𝑝)‘0) = 𝑋)} | 
| 18 | 17 | eqcomi 2746 | . . . 4
⊢ {𝑝 ∈ (Walks‘𝐺) ∣
((♯‘(1st ‘𝑝)) = 𝑁 ∧ ((2nd ‘𝑝)‘0) = 𝑋)} = {𝑝 ∈ {𝑞 ∈ (Walks‘𝐺) ∣ (♯‘(1st
‘𝑞)) = 𝑁} ∣ ((2nd
‘𝑝)‘0) = 𝑋} | 
| 19 |  | f1oeq2 6837 | . . . 4
⊢ ({𝑝 ∈ (Walks‘𝐺) ∣
((♯‘(1st ‘𝑝)) = 𝑁 ∧ ((2nd ‘𝑝)‘0) = 𝑋)} = {𝑝 ∈ {𝑞 ∈ (Walks‘𝐺) ∣ (♯‘(1st
‘𝑞)) = 𝑁} ∣ ((2nd
‘𝑝)‘0) = 𝑋} → (𝑓:{𝑝 ∈ (Walks‘𝐺) ∣ ((♯‘(1st
‘𝑝)) = 𝑁 ∧ ((2nd
‘𝑝)‘0) = 𝑋)}–1-1-onto→{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ↔ 𝑓:{𝑝 ∈ {𝑞 ∈ (Walks‘𝐺) ∣ (♯‘(1st
‘𝑞)) = 𝑁} ∣ ((2nd
‘𝑝)‘0) = 𝑋}–1-1-onto→{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})) | 
| 20 | 18, 19 | mp1i 13 | . . 3
⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0)
→ (𝑓:{𝑝 ∈ (Walks‘𝐺) ∣
((♯‘(1st ‘𝑝)) = 𝑁 ∧ ((2nd ‘𝑝)‘0) = 𝑋)}–1-1-onto→{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ↔ 𝑓:{𝑝 ∈ {𝑞 ∈ (Walks‘𝐺) ∣ (♯‘(1st
‘𝑞)) = 𝑁} ∣ ((2nd
‘𝑝)‘0) = 𝑋}–1-1-onto→{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})) | 
| 21 | 20 | exbidv 1921 | . 2
⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0)
→ (∃𝑓 𝑓:{𝑝 ∈ (Walks‘𝐺) ∣ ((♯‘(1st
‘𝑝)) = 𝑁 ∧ ((2nd
‘𝑝)‘0) = 𝑋)}–1-1-onto→{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ↔ ∃𝑓 𝑓:{𝑝 ∈ {𝑞 ∈ (Walks‘𝐺) ∣ (♯‘(1st
‘𝑞)) = 𝑁} ∣ ((2nd
‘𝑝)‘0) = 𝑋}–1-1-onto→{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})) | 
| 22 | 14, 21 | mpbird 257 | 1
⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0)
→ ∃𝑓 𝑓:{𝑝 ∈ (Walks‘𝐺) ∣ ((♯‘(1st
‘𝑝)) = 𝑁 ∧ ((2nd
‘𝑝)‘0) = 𝑋)}–1-1-onto→{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) |