MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlksnwwlknvbij Structured version   Visualization version   GIF version

Theorem wlksnwwlknvbij 29159
Description: There is a bijection between the set of walks of a fixed length and the set of walks represented by words of the same length and starting at the same vertex. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 5-Aug-2022.)
Assertion
Ref Expression
wlksnwwlknvbij ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) β†’ βˆƒπ‘“ 𝑓:{𝑝 ∈ (Walksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ ((2nd β€˜π‘)β€˜0) = 𝑋)}–1-1-ontoβ†’{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋})
Distinct variable groups:   𝑓,𝐺,𝑝,𝑀   𝑓,𝑁,𝑝,𝑀   𝑓,𝑋,𝑝,𝑀

Proof of Theorem wlksnwwlknvbij
Dummy variable π‘ž is distinct from all other variables.
StepHypRef Expression
1 fvex 6904 . . . . 5 (Walksβ€˜πΊ) ∈ V
21mptrabex 7226 . . . 4 (𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ↦ (2nd β€˜π‘)) ∈ V
32resex 6029 . . 3 ((𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ↦ (2nd β€˜π‘)) β†Ύ {𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}) ∈ V
4 eqid 2732 . . . 4 (𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ↦ (2nd β€˜π‘)) = (𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ↦ (2nd β€˜π‘))
5 eqid 2732 . . . . 5 {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} = {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁}
6 eqid 2732 . . . . 5 (𝑁 WWalksN 𝐺) = (𝑁 WWalksN 𝐺)
75, 6, 4wlknwwlksnbij 29139 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) β†’ (𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ↦ (2nd β€˜π‘)):{π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁}–1-1-ontoβ†’(𝑁 WWalksN 𝐺))
8 fveq1 6890 . . . . . 6 (𝑀 = (2nd β€˜π‘) β†’ (π‘€β€˜0) = ((2nd β€˜π‘)β€˜0))
98eqeq1d 2734 . . . . 5 (𝑀 = (2nd β€˜π‘) β†’ ((π‘€β€˜0) = 𝑋 ↔ ((2nd β€˜π‘)β€˜0) = 𝑋))
1093ad2ant3 1135 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) ∧ 𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∧ 𝑀 = (2nd β€˜π‘)) β†’ ((π‘€β€˜0) = 𝑋 ↔ ((2nd β€˜π‘)β€˜0) = 𝑋))
114, 7, 10f1oresrab 7124 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) β†’ ((𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ↦ (2nd β€˜π‘)) β†Ύ {𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}):{𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}–1-1-ontoβ†’{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋})
12 f1oeq1 6821 . . . 4 (𝑓 = ((𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ↦ (2nd β€˜π‘)) β†Ύ {𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}) β†’ (𝑓:{𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}–1-1-ontoβ†’{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋} ↔ ((𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ↦ (2nd β€˜π‘)) β†Ύ {𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}):{𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}–1-1-ontoβ†’{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋}))
1312spcegv 3587 . . 3 (((𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ↦ (2nd β€˜π‘)) β†Ύ {𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}) ∈ V β†’ (((𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ↦ (2nd β€˜π‘)) β†Ύ {𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}):{𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}–1-1-ontoβ†’{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋} β†’ βˆƒπ‘“ 𝑓:{𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}–1-1-ontoβ†’{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋}))
143, 11, 13mpsyl 68 . 2 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) β†’ βˆƒπ‘“ 𝑓:{𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}–1-1-ontoβ†’{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋})
15 2fveq3 6896 . . . . . . 7 (𝑝 = π‘ž β†’ (β™―β€˜(1st β€˜π‘)) = (β™―β€˜(1st β€˜π‘ž)))
1615eqeq1d 2734 . . . . . 6 (𝑝 = π‘ž β†’ ((β™―β€˜(1st β€˜π‘)) = 𝑁 ↔ (β™―β€˜(1st β€˜π‘ž)) = 𝑁))
1716rabrabi 3450 . . . . 5 {𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋} = {𝑝 ∈ (Walksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ ((2nd β€˜π‘)β€˜0) = 𝑋)}
1817eqcomi 2741 . . . 4 {𝑝 ∈ (Walksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ ((2nd β€˜π‘)β€˜0) = 𝑋)} = {𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}
19 f1oeq2 6822 . . . 4 ({𝑝 ∈ (Walksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ ((2nd β€˜π‘)β€˜0) = 𝑋)} = {𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋} β†’ (𝑓:{𝑝 ∈ (Walksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ ((2nd β€˜π‘)β€˜0) = 𝑋)}–1-1-ontoβ†’{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋} ↔ 𝑓:{𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}–1-1-ontoβ†’{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋}))
2018, 19mp1i 13 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) β†’ (𝑓:{𝑝 ∈ (Walksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ ((2nd β€˜π‘)β€˜0) = 𝑋)}–1-1-ontoβ†’{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋} ↔ 𝑓:{𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}–1-1-ontoβ†’{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋}))
2120exbidv 1924 . 2 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) β†’ (βˆƒπ‘“ 𝑓:{𝑝 ∈ (Walksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ ((2nd β€˜π‘)β€˜0) = 𝑋)}–1-1-ontoβ†’{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋} ↔ βˆƒπ‘“ 𝑓:{𝑝 ∈ {π‘ž ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘ž)) = 𝑁} ∣ ((2nd β€˜π‘)β€˜0) = 𝑋}–1-1-ontoβ†’{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋}))
2214, 21mpbird 256 1 ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) β†’ βˆƒπ‘“ 𝑓:{𝑝 ∈ (Walksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘)) = 𝑁 ∧ ((2nd β€˜π‘)β€˜0) = 𝑋)}–1-1-ontoβ†’{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑋})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106  {crab 3432  Vcvv 3474   ↦ cmpt 5231   β†Ύ cres 5678  β€“1-1-ontoβ†’wf1o 6542  β€˜cfv 6543  (class class class)co 7408  1st c1st 7972  2nd c2nd 7973  0cc0 11109  β„•0cn0 12471  β™―chash 14289  USPGraphcuspgr 28405  Walkscwlks 28850   WWalksN cwwlksn 29077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ifp 1062  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-2o 8466  df-oadd 8469  df-er 8702  df-map 8821  df-pm 8822  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-dju 9895  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-n0 12472  df-xnn0 12544  df-z 12558  df-uz 12822  df-fz 13484  df-fzo 13627  df-hash 14290  df-word 14464  df-edg 28305  df-uhgr 28315  df-upgr 28339  df-uspgr 28407  df-wlks 28853  df-wwlks 29081  df-wwlksn 29082
This theorem is referenced by:  rusgrnumwlkg  29228
  Copyright terms: Public domain W3C validator