MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabsneu Structured version   Visualization version   GIF version

Theorem rabsneu 4729
Description: Restricted existential uniqueness determined by a singleton. (Contributed by NM, 29-May-2006.) (Revised by Mario Carneiro, 23-Dec-2016.)
Assertion
Ref Expression
rabsneu ((𝐴𝑉 ∧ {𝑥𝐵𝜑} = {𝐴}) → ∃!𝑥𝐵 𝜑)

Proof of Theorem rabsneu
StepHypRef Expression
1 df-rab 3437 . . . 4 {𝑥𝐵𝜑} = {𝑥 ∣ (𝑥𝐵𝜑)}
21eqeq1i 2742 . . 3 ({𝑥𝐵𝜑} = {𝐴} ↔ {𝑥 ∣ (𝑥𝐵𝜑)} = {𝐴})
3 absneu 4728 . . 3 ((𝐴𝑉 ∧ {𝑥 ∣ (𝑥𝐵𝜑)} = {𝐴}) → ∃!𝑥(𝑥𝐵𝜑))
42, 3sylan2b 594 . 2 ((𝐴𝑉 ∧ {𝑥𝐵𝜑} = {𝐴}) → ∃!𝑥(𝑥𝐵𝜑))
5 df-reu 3381 . 2 (∃!𝑥𝐵 𝜑 ↔ ∃!𝑥(𝑥𝐵𝜑))
64, 5sylibr 234 1 ((𝐴𝑉 ∧ {𝑥𝐵𝜑} = {𝐴}) → ∃!𝑥𝐵 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  ∃!weu 2568  {cab 2714  ∃!wreu 3378  {crab 3436  {csn 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-reu 3381  df-rab 3437  df-sn 4627
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator