MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absneu Structured version   Visualization version   GIF version

Theorem absneu 4664
Description: Restricted existential uniqueness determined by a singleton. (Contributed by NM, 29-May-2006.)
Assertion
Ref Expression
absneu ((𝐴𝑉 ∧ {𝑥𝜑} = {𝐴}) → ∃!𝑥𝜑)

Proof of Theorem absneu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sneq 4571 . . . . 5 (𝑦 = 𝐴 → {𝑦} = {𝐴})
21eqeq2d 2749 . . . 4 (𝑦 = 𝐴 → ({𝑥𝜑} = {𝑦} ↔ {𝑥𝜑} = {𝐴}))
32spcegv 3536 . . 3 (𝐴𝑉 → ({𝑥𝜑} = {𝐴} → ∃𝑦{𝑥𝜑} = {𝑦}))
43imp 407 . 2 ((𝐴𝑉 ∧ {𝑥𝜑} = {𝐴}) → ∃𝑦{𝑥𝜑} = {𝑦})
5 euabsn2 4661 . 2 (∃!𝑥𝜑 ↔ ∃𝑦{𝑥𝜑} = {𝑦})
64, 5sylibr 233 1 ((𝐴𝑉 ∧ {𝑥𝜑} = {𝐴}) → ∃!𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wex 1782  wcel 2106  ∃!weu 2568  {cab 2715  {csn 4561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-sn 4562
This theorem is referenced by:  rabsneu  4665
  Copyright terms: Public domain W3C validator