| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssiinf | Structured version Visualization version GIF version | ||
| Description: Subset theorem for an indexed intersection. (Contributed by FL, 15-Oct-2012.) (Proof shortened by Mario Carneiro, 14-Oct-2016.) |
| Ref | Expression |
|---|---|
| ssiinf.1 | ⊢ Ⅎ𝑥𝐶 |
| Ref | Expression |
|---|---|
| ssiinf | ⊢ (𝐶 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliin 4946 | . . . . 5 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) | |
| 2 | 1 | elv 3441 | . . . 4 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
| 3 | 2 | ralbii 3078 | . . 3 ⊢ (∀𝑦 ∈ 𝐶 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦 ∈ 𝐶 ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
| 4 | ssiinf.1 | . . . 4 ⊢ Ⅎ𝑥𝐶 | |
| 5 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
| 6 | 4, 5 | ralcomf 3270 | . . 3 ⊢ (∀𝑦 ∈ 𝐶 ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝑦 ∈ 𝐵) |
| 7 | 3, 6 | bitri 275 | . 2 ⊢ (∀𝑦 ∈ 𝐶 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝑦 ∈ 𝐵) |
| 8 | dfss3 3923 | . 2 ⊢ (𝐶 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦 ∈ 𝐶 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵) | |
| 9 | dfss3 3923 | . . 3 ⊢ (𝐶 ⊆ 𝐵 ↔ ∀𝑦 ∈ 𝐶 𝑦 ∈ 𝐵) | |
| 10 | 9 | ralbii 3078 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝑦 ∈ 𝐵) |
| 11 | 7, 8, 10 | 3bitr4i 303 | 1 ⊢ (𝐶 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2111 Ⅎwnfc 2879 ∀wral 3047 Vcvv 3436 ⊆ wss 3902 ∩ ciin 4942 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-v 3438 df-ss 3919 df-iin 4944 |
| This theorem is referenced by: ssiin 5004 dmiin 5893 |
| Copyright terms: Public domain | W3C validator |