MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssiinf Structured version   Visualization version   GIF version

Theorem ssiinf 4995
Description: Subset theorem for an indexed intersection. (Contributed by FL, 15-Oct-2012.) (Proof shortened by Mario Carneiro, 14-Oct-2016.)
Hypothesis
Ref Expression
ssiinf.1 𝑥𝐶
Assertion
Ref Expression
ssiinf (𝐶 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝐶𝐵)

Proof of Theorem ssiinf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eliin 4940 . . . . 5 (𝑦 ∈ V → (𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑦𝐵))
21elv 3447 . . . 4 (𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑦𝐵)
32ralbii 3093 . . 3 (∀𝑦𝐶 𝑦 𝑥𝐴 𝐵 ↔ ∀𝑦𝐶𝑥𝐴 𝑦𝐵)
4 ssiinf.1 . . . 4 𝑥𝐶
5 nfcv 2905 . . . 4 𝑦𝐴
64, 5ralcomf 3282 . . 3 (∀𝑦𝐶𝑥𝐴 𝑦𝐵 ↔ ∀𝑥𝐴𝑦𝐶 𝑦𝐵)
73, 6bitri 274 . 2 (∀𝑦𝐶 𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴𝑦𝐶 𝑦𝐵)
8 dfss3 3918 . 2 (𝐶 𝑥𝐴 𝐵 ↔ ∀𝑦𝐶 𝑦 𝑥𝐴 𝐵)
9 dfss3 3918 . . 3 (𝐶𝐵 ↔ ∀𝑦𝐶 𝑦𝐵)
109ralbii 3093 . 2 (∀𝑥𝐴 𝐶𝐵 ↔ ∀𝑥𝐴𝑦𝐶 𝑦𝐵)
117, 8, 103bitr4i 302 1 (𝐶 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2105  wnfc 2885  wral 3062  Vcvv 3441  wss 3896   ciin 4936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-11 2153  ax-12 2170  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1543  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ral 3063  df-v 3443  df-in 3903  df-ss 3913  df-iin 4938
This theorem is referenced by:  ssiin  4996  dmiin  5879
  Copyright terms: Public domain W3C validator