MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  falseral0 Structured version   Visualization version   GIF version

Theorem falseral0 4514
Description: A false statement can only be true for elements of an empty set. (Contributed by AV, 30-Oct-2020.)
Assertion
Ref Expression
falseral0 ((∀𝑥 ¬ 𝜑 ∧ ∀𝑥𝐴 𝜑) → 𝐴 = ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem falseral0
StepHypRef Expression
1 df-ral 3056 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
2 19.26 1865 . . 3 (∀𝑥𝜑 ∧ (𝑥𝐴𝜑)) ↔ (∀𝑥 ¬ 𝜑 ∧ ∀𝑥(𝑥𝐴𝜑)))
3 con3 153 . . . . . . 7 ((𝑥𝐴𝜑) → (¬ 𝜑 → ¬ 𝑥𝐴))
43impcom 407 . . . . . 6 ((¬ 𝜑 ∧ (𝑥𝐴𝜑)) → ¬ 𝑥𝐴)
54alimi 1805 . . . . 5 (∀𝑥𝜑 ∧ (𝑥𝐴𝜑)) → ∀𝑥 ¬ 𝑥𝐴)
6 alnex 1775 . . . . 5 (∀𝑥 ¬ 𝑥𝐴 ↔ ¬ ∃𝑥 𝑥𝐴)
75, 6sylib 217 . . . 4 (∀𝑥𝜑 ∧ (𝑥𝐴𝜑)) → ¬ ∃𝑥 𝑥𝐴)
8 notnotb 315 . . . . 5 (𝐴 = ∅ ↔ ¬ ¬ 𝐴 = ∅)
9 neq0 4340 . . . . 5 𝐴 = ∅ ↔ ∃𝑥 𝑥𝐴)
108, 9xchbinx 334 . . . 4 (𝐴 = ∅ ↔ ¬ ∃𝑥 𝑥𝐴)
117, 10sylibr 233 . . 3 (∀𝑥𝜑 ∧ (𝑥𝐴𝜑)) → 𝐴 = ∅)
122, 11sylbir 234 . 2 ((∀𝑥 ¬ 𝜑 ∧ ∀𝑥(𝑥𝐴𝜑)) → 𝐴 = ∅)
131, 12sylan2b 593 1 ((∀𝑥 ¬ 𝜑 ∧ ∀𝑥𝐴 𝜑) → 𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1531   = wceq 1533  wex 1773  wcel 2098  wral 3055  c0 4317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-9 2108  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-ral 3056  df-dif 3946  df-nul 4318
This theorem is referenced by:  uvtx01vtx  29162
  Copyright terms: Public domain W3C validator