MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  falseral0 Structured version   Visualization version   GIF version

Theorem falseral0 4464
Description: A false statement can only be true for elements of an empty set. (Contributed by AV, 30-Oct-2020.)
Assertion
Ref Expression
falseral0 ((∀𝑥 ¬ 𝜑 ∧ ∀𝑥𝐴 𝜑) → 𝐴 = ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem falseral0
StepHypRef Expression
1 df-ral 3062 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
2 19.26 1872 . . 3 (∀𝑥𝜑 ∧ (𝑥𝐴𝜑)) ↔ (∀𝑥 ¬ 𝜑 ∧ ∀𝑥(𝑥𝐴𝜑)))
3 con3 153 . . . . . . 7 ((𝑥𝐴𝜑) → (¬ 𝜑 → ¬ 𝑥𝐴))
43impcom 408 . . . . . 6 ((¬ 𝜑 ∧ (𝑥𝐴𝜑)) → ¬ 𝑥𝐴)
54alimi 1812 . . . . 5 (∀𝑥𝜑 ∧ (𝑥𝐴𝜑)) → ∀𝑥 ¬ 𝑥𝐴)
6 alnex 1782 . . . . 5 (∀𝑥 ¬ 𝑥𝐴 ↔ ¬ ∃𝑥 𝑥𝐴)
75, 6sylib 217 . . . 4 (∀𝑥𝜑 ∧ (𝑥𝐴𝜑)) → ¬ ∃𝑥 𝑥𝐴)
8 notnotb 314 . . . . 5 (𝐴 = ∅ ↔ ¬ ¬ 𝐴 = ∅)
9 neq0 4292 . . . . 5 𝐴 = ∅ ↔ ∃𝑥 𝑥𝐴)
108, 9xchbinx 333 . . . 4 (𝐴 = ∅ ↔ ¬ ∃𝑥 𝑥𝐴)
117, 10sylibr 233 . . 3 (∀𝑥𝜑 ∧ (𝑥𝐴𝜑)) → 𝐴 = ∅)
122, 11sylbir 234 . 2 ((∀𝑥 ¬ 𝜑 ∧ ∀𝑥(𝑥𝐴𝜑)) → 𝐴 = ∅)
131, 12sylan2b 594 1 ((∀𝑥 ¬ 𝜑 ∧ ∀𝑥𝐴 𝜑) → 𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wal 1538   = wceq 1540  wex 1780  wcel 2105  wral 3061  c0 4269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-ral 3062  df-dif 3901  df-nul 4270
This theorem is referenced by:  uvtx01vtx  28053
  Copyright terms: Public domain W3C validator