![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralprgOLD | Structured version Visualization version GIF version |
Description: Obsolete version of ralprg 4693 as of 30-Sep-2024. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.) (Proof shortened by AV, 8-Apr-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ralprg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
ralprg.2 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
ralprgOLD | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1909 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | nfv 1909 | . 2 ⊢ Ⅎ𝑥𝜒 | |
3 | ralprg.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | ralprg.2 | . 2 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) | |
5 | 1, 2, 3, 4 | ralprgf 4691 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3055 {cpr 4625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2163 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-v 3470 df-sbc 3773 df-un 3948 df-sn 4624 df-pr 4626 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |