Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralprg | Structured version Visualization version GIF version |
Description: Convert a restricted universal quantification over a pair to a conjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.) Avoid ax-10 2139, ax-12 2173. (Revised by Gino Giotto, 30-Sep-2024.) |
Ref | Expression |
---|---|
ralprg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
ralprg.2 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
ralprg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4561 | . . . 4 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
2 | 1 | raleqi 3337 | . . 3 ⊢ (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ ∀𝑥 ∈ ({𝐴} ∪ {𝐵})𝜑) |
3 | ralunb 4121 | . . 3 ⊢ (∀𝑥 ∈ ({𝐴} ∪ {𝐵})𝜑 ↔ (∀𝑥 ∈ {𝐴}𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑)) | |
4 | 2, 3 | bitri 274 | . 2 ⊢ (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (∀𝑥 ∈ {𝐴}𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑)) |
5 | ralprg.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
6 | 5 | ralsng 4606 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
7 | ralprg.2 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) | |
8 | 7 | ralsng 4606 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (∀𝑥 ∈ {𝐵}𝜑 ↔ 𝜒)) |
9 | 6, 8 | bi2anan9 635 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((∀𝑥 ∈ {𝐴}𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑) ↔ (𝜓 ∧ 𝜒))) |
10 | 4, 9 | syl5bb 282 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∪ cun 3881 {csn 4558 {cpr 4560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-v 3424 df-un 3888 df-sn 4559 df-pr 4561 |
This theorem is referenced by: rexprg 4629 raltpg 4631 ralpr 4633 reuprg0 4635 iinxprg 5014 disjprgw 5065 disjprg 5066 fpropnf1 7121 f12dfv 7126 f13dfv 7127 suppr 9160 infpr 9192 pfx2 14588 sumpr 15388 gcdcllem2 16135 lcmfpr 16260 joinval2lem 18013 meetval2lem 18027 sgrp2rid2 18480 sgrp2nmndlem4 18482 sgrp2nmndlem5 18483 iccntr 23890 limcun 24964 cplgr3v 27705 3wlkdlem4 28427 frgr3v 28540 3vfriswmgr 28543 prsiga 31999 paireqne 44851 |
Copyright terms: Public domain | W3C validator |