MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralprg Structured version   Visualization version   GIF version

Theorem ralprg 4627
Description: Convert a restricted universal quantification over a pair to a conjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.) Avoid ax-10 2139, ax-12 2173. (Revised by Gino Giotto, 30-Sep-2024.)
Hypotheses
Ref Expression
ralprg.1 (𝑥 = 𝐴 → (𝜑𝜓))
ralprg.2 (𝑥 = 𝐵 → (𝜑𝜒))
Assertion
Ref Expression
ralprg ((𝐴𝑉𝐵𝑊) → (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem ralprg
StepHypRef Expression
1 df-pr 4561 . . . 4 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
21raleqi 3337 . . 3 (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ ∀𝑥 ∈ ({𝐴} ∪ {𝐵})𝜑)
3 ralunb 4121 . . 3 (∀𝑥 ∈ ({𝐴} ∪ {𝐵})𝜑 ↔ (∀𝑥 ∈ {𝐴}𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑))
42, 3bitri 274 . 2 (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (∀𝑥 ∈ {𝐴}𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑))
5 ralprg.1 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
65ralsng 4606 . . 3 (𝐴𝑉 → (∀𝑥 ∈ {𝐴}𝜑𝜓))
7 ralprg.2 . . . 4 (𝑥 = 𝐵 → (𝜑𝜒))
87ralsng 4606 . . 3 (𝐵𝑊 → (∀𝑥 ∈ {𝐵}𝜑𝜒))
96, 8bi2anan9 635 . 2 ((𝐴𝑉𝐵𝑊) → ((∀𝑥 ∈ {𝐴}𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑) ↔ (𝜓𝜒)))
104, 9syl5bb 282 1 ((𝐴𝑉𝐵𝑊) → (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  cun 3881  {csn 4558  {cpr 4560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-v 3424  df-un 3888  df-sn 4559  df-pr 4561
This theorem is referenced by:  rexprg  4629  raltpg  4631  ralpr  4633  reuprg0  4635  iinxprg  5014  disjprgw  5065  disjprg  5066  fpropnf1  7121  f12dfv  7126  f13dfv  7127  suppr  9160  infpr  9192  pfx2  14588  sumpr  15388  gcdcllem2  16135  lcmfpr  16260  joinval2lem  18013  meetval2lem  18027  sgrp2rid2  18480  sgrp2nmndlem4  18482  sgrp2nmndlem5  18483  iccntr  23890  limcun  24964  cplgr3v  27705  3wlkdlem4  28427  frgr3v  28540  3vfriswmgr  28543  prsiga  31999  paireqne  44851
  Copyright terms: Public domain W3C validator