MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralprg Structured version   Visualization version   GIF version

Theorem ralprg 4649
Description: Convert a restricted universal quantification over a pair to a conjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.) Avoid ax-10 2144, ax-12 2180. (Revised by GG, 30-Sep-2024.)
Hypotheses
Ref Expression
ralprg.1 (𝑥 = 𝐴 → (𝜑𝜓))
ralprg.2 (𝑥 = 𝐵 → (𝜑𝜒))
Assertion
Ref Expression
ralprg ((𝐴𝑉𝐵𝑊) → (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem ralprg
StepHypRef Expression
1 df-pr 4579 . . . 4 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
21raleqi 3290 . . 3 (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ ∀𝑥 ∈ ({𝐴} ∪ {𝐵})𝜑)
3 ralunb 4147 . . 3 (∀𝑥 ∈ ({𝐴} ∪ {𝐵})𝜑 ↔ (∀𝑥 ∈ {𝐴}𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑))
42, 3bitri 275 . 2 (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (∀𝑥 ∈ {𝐴}𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑))
5 ralprg.1 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
65ralsng 4628 . . 3 (𝐴𝑉 → (∀𝑥 ∈ {𝐴}𝜑𝜓))
7 ralprg.2 . . . 4 (𝑥 = 𝐵 → (𝜑𝜒))
87ralsng 4628 . . 3 (𝐵𝑊 → (∀𝑥 ∈ {𝐵}𝜑𝜒))
96, 8bi2anan9 638 . 2 ((𝐴𝑉𝐵𝑊) → ((∀𝑥 ∈ {𝐴}𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑) ↔ (𝜓𝜒)))
104, 9bitrid 283 1 ((𝐴𝑉𝐵𝑊) → (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  cun 3900  {csn 4576  {cpr 4578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-v 3438  df-un 3907  df-sn 4577  df-pr 4579
This theorem is referenced by:  rexprg  4650  raltpg  4651  ralpr  4653  reuprg0  4655  iinxprg  5037  disjprg  5087  fpropnf1  7201  f12dfv  7207  f13dfv  7208  suppr  9356  infpr  9389  pfx2  14851  sumpr  15652  gcdcllem2  16408  lcmfpr  16535  joinval2lem  18281  meetval2lem  18295  sgrp2rid2  18831  sgrp2nmndlem4  18833  sgrp2nmndlem5  18834  iccntr  24735  limcun  25821  cplgr3v  29411  3wlkdlem4  30137  frgr3v  30250  3vfriswmgr  30253  prsiga  34139  paireqne  47541
  Copyright terms: Public domain W3C validator