Step | Hyp | Ref
| Expression |
1 | | rexcom4 3268 |
. . . . . . . 8
⊢
(∃𝑣 ∈
𝑉 ∃𝑦(𝑧 = 𝐴 ∧ 𝑦 = 𝐵) ↔ ∃𝑦∃𝑣 ∈ 𝑉 (𝑧 = 𝐴 ∧ 𝑦 = 𝐵)) |
2 | | rexcom4 3268 |
. . . . . . . 8
⊢
(∃𝑖 ∈
𝐼 ∃𝑦(𝑧 = 𝐶 ∧ 𝑦 = 𝐷) ↔ ∃𝑦∃𝑖 ∈ 𝐼 (𝑧 = 𝐶 ∧ 𝑦 = 𝐷)) |
3 | 1, 2 | orbi12i 913 |
. . . . . . 7
⊢
((∃𝑣 ∈
𝑉 ∃𝑦(𝑧 = 𝐴 ∧ 𝑦 = 𝐵) ∨ ∃𝑖 ∈ 𝐼 ∃𝑦(𝑧 = 𝐶 ∧ 𝑦 = 𝐷)) ↔ (∃𝑦∃𝑣 ∈ 𝑉 (𝑧 = 𝐴 ∧ 𝑦 = 𝐵) ∨ ∃𝑦∃𝑖 ∈ 𝐼 (𝑧 = 𝐶 ∧ 𝑦 = 𝐷))) |
4 | | 19.43 1883 |
. . . . . . 7
⊢
(∃𝑦(∃𝑣 ∈ 𝑉 (𝑧 = 𝐴 ∧ 𝑦 = 𝐵) ∨ ∃𝑖 ∈ 𝐼 (𝑧 = 𝐶 ∧ 𝑦 = 𝐷)) ↔ (∃𝑦∃𝑣 ∈ 𝑉 (𝑧 = 𝐴 ∧ 𝑦 = 𝐵) ∨ ∃𝑦∃𝑖 ∈ 𝐼 (𝑧 = 𝐶 ∧ 𝑦 = 𝐷))) |
5 | 3, 4 | bitr4i 278 |
. . . . . 6
⊢
((∃𝑣 ∈
𝑉 ∃𝑦(𝑧 = 𝐴 ∧ 𝑦 = 𝐵) ∨ ∃𝑖 ∈ 𝐼 ∃𝑦(𝑧 = 𝐶 ∧ 𝑦 = 𝐷)) ↔ ∃𝑦(∃𝑣 ∈ 𝑉 (𝑧 = 𝐴 ∧ 𝑦 = 𝐵) ∨ ∃𝑖 ∈ 𝐼 (𝑧 = 𝐶 ∧ 𝑦 = 𝐷))) |
6 | 5 | rexbii 3094 |
. . . . 5
⊢
(∃𝑢 ∈
𝑈 (∃𝑣 ∈ 𝑉 ∃𝑦(𝑧 = 𝐴 ∧ 𝑦 = 𝐵) ∨ ∃𝑖 ∈ 𝐼 ∃𝑦(𝑧 = 𝐶 ∧ 𝑦 = 𝐷)) ↔ ∃𝑢 ∈ 𝑈 ∃𝑦(∃𝑣 ∈ 𝑉 (𝑧 = 𝐴 ∧ 𝑦 = 𝐵) ∨ ∃𝑖 ∈ 𝐼 (𝑧 = 𝐶 ∧ 𝑦 = 𝐷))) |
7 | | rexcom4 3268 |
. . . . 5
⊢
(∃𝑢 ∈
𝑈 ∃𝑦(∃𝑣 ∈ 𝑉 (𝑧 = 𝐴 ∧ 𝑦 = 𝐵) ∨ ∃𝑖 ∈ 𝐼 (𝑧 = 𝐶 ∧ 𝑦 = 𝐷)) ↔ ∃𝑦∃𝑢 ∈ 𝑈 (∃𝑣 ∈ 𝑉 (𝑧 = 𝐴 ∧ 𝑦 = 𝐵) ∨ ∃𝑖 ∈ 𝐼 (𝑧 = 𝐶 ∧ 𝑦 = 𝐷))) |
8 | 6, 7 | bitri 275 |
. . . 4
⊢
(∃𝑢 ∈
𝑈 (∃𝑣 ∈ 𝑉 ∃𝑦(𝑧 = 𝐴 ∧ 𝑦 = 𝐵) ∨ ∃𝑖 ∈ 𝐼 ∃𝑦(𝑧 = 𝐶 ∧ 𝑦 = 𝐷)) ↔ ∃𝑦∃𝑢 ∈ 𝑈 (∃𝑣 ∈ 𝑉 (𝑧 = 𝐴 ∧ 𝑦 = 𝐵) ∨ ∃𝑖 ∈ 𝐼 (𝑧 = 𝐶 ∧ 𝑦 = 𝐷))) |
9 | | simpl 484 |
. . . . . . . . . 10
⊢ ((𝑧 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑧 = 𝐴) |
10 | 9 | exlimiv 1931 |
. . . . . . . . 9
⊢
(∃𝑦(𝑧 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑧 = 𝐴) |
11 | | elisset 2818 |
. . . . . . . . . 10
⊢ (𝐵 ∈ 𝑋 → ∃𝑦 𝑦 = 𝐵) |
12 | | ibar 530 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝐴 → (𝑦 = 𝐵 ↔ (𝑧 = 𝐴 ∧ 𝑦 = 𝐵))) |
13 | 12 | bicomd 222 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝐴 → ((𝑧 = 𝐴 ∧ 𝑦 = 𝐵) ↔ 𝑦 = 𝐵)) |
14 | 13 | exbidv 1922 |
. . . . . . . . . 10
⊢ (𝑧 = 𝐴 → (∃𝑦(𝑧 = 𝐴 ∧ 𝑦 = 𝐵) ↔ ∃𝑦 𝑦 = 𝐵)) |
15 | 11, 14 | syl5ibrcom 247 |
. . . . . . . . 9
⊢ (𝐵 ∈ 𝑋 → (𝑧 = 𝐴 → ∃𝑦(𝑧 = 𝐴 ∧ 𝑦 = 𝐵))) |
16 | 10, 15 | impbid2 225 |
. . . . . . . 8
⊢ (𝐵 ∈ 𝑋 → (∃𝑦(𝑧 = 𝐴 ∧ 𝑦 = 𝐵) ↔ 𝑧 = 𝐴)) |
17 | 16 | ralrexbid 3106 |
. . . . . . 7
⊢
(∀𝑣 ∈
𝑉 𝐵 ∈ 𝑋 → (∃𝑣 ∈ 𝑉 ∃𝑦(𝑧 = 𝐴 ∧ 𝑦 = 𝐵) ↔ ∃𝑣 ∈ 𝑉 𝑧 = 𝐴)) |
18 | 17 | adantr 482 |
. . . . . 6
⊢
((∀𝑣 ∈
𝑉 𝐵 ∈ 𝑋 ∧ ∀𝑖 ∈ 𝐼 𝐷 ∈ 𝑊) → (∃𝑣 ∈ 𝑉 ∃𝑦(𝑧 = 𝐴 ∧ 𝑦 = 𝐵) ↔ ∃𝑣 ∈ 𝑉 𝑧 = 𝐴)) |
19 | | simpl 484 |
. . . . . . . . . 10
⊢ ((𝑧 = 𝐶 ∧ 𝑦 = 𝐷) → 𝑧 = 𝐶) |
20 | 19 | exlimiv 1931 |
. . . . . . . . 9
⊢
(∃𝑦(𝑧 = 𝐶 ∧ 𝑦 = 𝐷) → 𝑧 = 𝐶) |
21 | | elisset 2818 |
. . . . . . . . . 10
⊢ (𝐷 ∈ 𝑊 → ∃𝑦 𝑦 = 𝐷) |
22 | | ibar 530 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝐶 → (𝑦 = 𝐷 ↔ (𝑧 = 𝐶 ∧ 𝑦 = 𝐷))) |
23 | 22 | bicomd 222 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝐶 → ((𝑧 = 𝐶 ∧ 𝑦 = 𝐷) ↔ 𝑦 = 𝐷)) |
24 | 23 | exbidv 1922 |
. . . . . . . . . 10
⊢ (𝑧 = 𝐶 → (∃𝑦(𝑧 = 𝐶 ∧ 𝑦 = 𝐷) ↔ ∃𝑦 𝑦 = 𝐷)) |
25 | 21, 24 | syl5ibrcom 247 |
. . . . . . . . 9
⊢ (𝐷 ∈ 𝑊 → (𝑧 = 𝐶 → ∃𝑦(𝑧 = 𝐶 ∧ 𝑦 = 𝐷))) |
26 | 20, 25 | impbid2 225 |
. . . . . . . 8
⊢ (𝐷 ∈ 𝑊 → (∃𝑦(𝑧 = 𝐶 ∧ 𝑦 = 𝐷) ↔ 𝑧 = 𝐶)) |
27 | 26 | ralrexbid 3106 |
. . . . . . 7
⊢
(∀𝑖 ∈
𝐼 𝐷 ∈ 𝑊 → (∃𝑖 ∈ 𝐼 ∃𝑦(𝑧 = 𝐶 ∧ 𝑦 = 𝐷) ↔ ∃𝑖 ∈ 𝐼 𝑧 = 𝐶)) |
28 | 27 | adantl 483 |
. . . . . 6
⊢
((∀𝑣 ∈
𝑉 𝐵 ∈ 𝑋 ∧ ∀𝑖 ∈ 𝐼 𝐷 ∈ 𝑊) → (∃𝑖 ∈ 𝐼 ∃𝑦(𝑧 = 𝐶 ∧ 𝑦 = 𝐷) ↔ ∃𝑖 ∈ 𝐼 𝑧 = 𝐶)) |
29 | 18, 28 | orbi12d 917 |
. . . . 5
⊢
((∀𝑣 ∈
𝑉 𝐵 ∈ 𝑋 ∧ ∀𝑖 ∈ 𝐼 𝐷 ∈ 𝑊) → ((∃𝑣 ∈ 𝑉 ∃𝑦(𝑧 = 𝐴 ∧ 𝑦 = 𝐵) ∨ ∃𝑖 ∈ 𝐼 ∃𝑦(𝑧 = 𝐶 ∧ 𝑦 = 𝐷)) ↔ (∃𝑣 ∈ 𝑉 𝑧 = 𝐴 ∨ ∃𝑖 ∈ 𝐼 𝑧 = 𝐶))) |
30 | 29 | ralrexbid 3106 |
. . . 4
⊢
(∀𝑢 ∈
𝑈 (∀𝑣 ∈ 𝑉 𝐵 ∈ 𝑋 ∧ ∀𝑖 ∈ 𝐼 𝐷 ∈ 𝑊) → (∃𝑢 ∈ 𝑈 (∃𝑣 ∈ 𝑉 ∃𝑦(𝑧 = 𝐴 ∧ 𝑦 = 𝐵) ∨ ∃𝑖 ∈ 𝐼 ∃𝑦(𝑧 = 𝐶 ∧ 𝑦 = 𝐷)) ↔ ∃𝑢 ∈ 𝑈 (∃𝑣 ∈ 𝑉 𝑧 = 𝐴 ∨ ∃𝑖 ∈ 𝐼 𝑧 = 𝐶))) |
31 | 8, 30 | bitr3id 285 |
. . 3
⊢
(∀𝑢 ∈
𝑈 (∀𝑣 ∈ 𝑉 𝐵 ∈ 𝑋 ∧ ∀𝑖 ∈ 𝐼 𝐷 ∈ 𝑊) → (∃𝑦∃𝑢 ∈ 𝑈 (∃𝑣 ∈ 𝑉 (𝑧 = 𝐴 ∧ 𝑦 = 𝐵) ∨ ∃𝑖 ∈ 𝐼 (𝑧 = 𝐶 ∧ 𝑦 = 𝐷)) ↔ ∃𝑢 ∈ 𝑈 (∃𝑣 ∈ 𝑉 𝑧 = 𝐴 ∨ ∃𝑖 ∈ 𝐼 𝑧 = 𝐶))) |
32 | | eqeq1 2740 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝑥 = 𝐴 ↔ 𝑧 = 𝐴)) |
33 | 32 | anbi1d 631 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑧 = 𝐴 ∧ 𝑦 = 𝐵))) |
34 | 33 | rexbidv 3172 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (∃𝑣 ∈ 𝑉 (𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ↔ ∃𝑣 ∈ 𝑉 (𝑧 = 𝐴 ∧ 𝑦 = 𝐵))) |
35 | | eqeq1 2740 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝑥 = 𝐶 ↔ 𝑧 = 𝐶)) |
36 | 35 | anbi1d 631 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → ((𝑥 = 𝐶 ∧ 𝑦 = 𝐷) ↔ (𝑧 = 𝐶 ∧ 𝑦 = 𝐷))) |
37 | 36 | rexbidv 3172 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (∃𝑖 ∈ 𝐼 (𝑥 = 𝐶 ∧ 𝑦 = 𝐷) ↔ ∃𝑖 ∈ 𝐼 (𝑧 = 𝐶 ∧ 𝑦 = 𝐷))) |
38 | 34, 37 | orbi12d 917 |
. . . . . 6
⊢ (𝑥 = 𝑧 → ((∃𝑣 ∈ 𝑉 (𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∨ ∃𝑖 ∈ 𝐼 (𝑥 = 𝐶 ∧ 𝑦 = 𝐷)) ↔ (∃𝑣 ∈ 𝑉 (𝑧 = 𝐴 ∧ 𝑦 = 𝐵) ∨ ∃𝑖 ∈ 𝐼 (𝑧 = 𝐶 ∧ 𝑦 = 𝐷)))) |
39 | 38 | rexbidv 3172 |
. . . . 5
⊢ (𝑥 = 𝑧 → (∃𝑢 ∈ 𝑈 (∃𝑣 ∈ 𝑉 (𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∨ ∃𝑖 ∈ 𝐼 (𝑥 = 𝐶 ∧ 𝑦 = 𝐷)) ↔ ∃𝑢 ∈ 𝑈 (∃𝑣 ∈ 𝑉 (𝑧 = 𝐴 ∧ 𝑦 = 𝐵) ∨ ∃𝑖 ∈ 𝐼 (𝑧 = 𝐶 ∧ 𝑦 = 𝐷)))) |
40 | 39 | dmopabelb 5838 |
. . . 4
⊢ (𝑧 ∈ V → (𝑧 ∈ dom {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝑈 (∃𝑣 ∈ 𝑉 (𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∨ ∃𝑖 ∈ 𝐼 (𝑥 = 𝐶 ∧ 𝑦 = 𝐷))} ↔ ∃𝑦∃𝑢 ∈ 𝑈 (∃𝑣 ∈ 𝑉 (𝑧 = 𝐴 ∧ 𝑦 = 𝐵) ∨ ∃𝑖 ∈ 𝐼 (𝑧 = 𝐶 ∧ 𝑦 = 𝐷)))) |
41 | 40 | elv 3443 |
. . 3
⊢ (𝑧 ∈ dom {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝑈 (∃𝑣 ∈ 𝑉 (𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∨ ∃𝑖 ∈ 𝐼 (𝑥 = 𝐶 ∧ 𝑦 = 𝐷))} ↔ ∃𝑦∃𝑢 ∈ 𝑈 (∃𝑣 ∈ 𝑉 (𝑧 = 𝐴 ∧ 𝑦 = 𝐵) ∨ ∃𝑖 ∈ 𝐼 (𝑧 = 𝐶 ∧ 𝑦 = 𝐷))) |
42 | | vex 3441 |
. . . 4
⊢ 𝑧 ∈ V |
43 | 32 | rexbidv 3172 |
. . . . . 6
⊢ (𝑥 = 𝑧 → (∃𝑣 ∈ 𝑉 𝑥 = 𝐴 ↔ ∃𝑣 ∈ 𝑉 𝑧 = 𝐴)) |
44 | 35 | rexbidv 3172 |
. . . . . 6
⊢ (𝑥 = 𝑧 → (∃𝑖 ∈ 𝐼 𝑥 = 𝐶 ↔ ∃𝑖 ∈ 𝐼 𝑧 = 𝐶)) |
45 | 43, 44 | orbi12d 917 |
. . . . 5
⊢ (𝑥 = 𝑧 → ((∃𝑣 ∈ 𝑉 𝑥 = 𝐴 ∨ ∃𝑖 ∈ 𝐼 𝑥 = 𝐶) ↔ (∃𝑣 ∈ 𝑉 𝑧 = 𝐴 ∨ ∃𝑖 ∈ 𝐼 𝑧 = 𝐶))) |
46 | 45 | rexbidv 3172 |
. . . 4
⊢ (𝑥 = 𝑧 → (∃𝑢 ∈ 𝑈 (∃𝑣 ∈ 𝑉 𝑥 = 𝐴 ∨ ∃𝑖 ∈ 𝐼 𝑥 = 𝐶) ↔ ∃𝑢 ∈ 𝑈 (∃𝑣 ∈ 𝑉 𝑧 = 𝐴 ∨ ∃𝑖 ∈ 𝐼 𝑧 = 𝐶))) |
47 | 42, 46 | elab 3614 |
. . 3
⊢ (𝑧 ∈ {𝑥 ∣ ∃𝑢 ∈ 𝑈 (∃𝑣 ∈ 𝑉 𝑥 = 𝐴 ∨ ∃𝑖 ∈ 𝐼 𝑥 = 𝐶)} ↔ ∃𝑢 ∈ 𝑈 (∃𝑣 ∈ 𝑉 𝑧 = 𝐴 ∨ ∃𝑖 ∈ 𝐼 𝑧 = 𝐶)) |
48 | 31, 41, 47 | 3bitr4g 314 |
. 2
⊢
(∀𝑢 ∈
𝑈 (∀𝑣 ∈ 𝑉 𝐵 ∈ 𝑋 ∧ ∀𝑖 ∈ 𝐼 𝐷 ∈ 𝑊) → (𝑧 ∈ dom {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝑈 (∃𝑣 ∈ 𝑉 (𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∨ ∃𝑖 ∈ 𝐼 (𝑥 = 𝐶 ∧ 𝑦 = 𝐷))} ↔ 𝑧 ∈ {𝑥 ∣ ∃𝑢 ∈ 𝑈 (∃𝑣 ∈ 𝑉 𝑥 = 𝐴 ∨ ∃𝑖 ∈ 𝐼 𝑥 = 𝐶)})) |
49 | 48 | eqrdv 2734 |
1
⊢
(∀𝑢 ∈
𝑈 (∀𝑣 ∈ 𝑉 𝐵 ∈ 𝑋 ∧ ∀𝑖 ∈ 𝐼 𝐷 ∈ 𝑊) → dom {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝑈 (∃𝑣 ∈ 𝑉 (𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∨ ∃𝑖 ∈ 𝐼 (𝑥 = 𝐶 ∧ 𝑦 = 𝐷))} = {𝑥 ∣ ∃𝑢 ∈ 𝑈 (∃𝑣 ∈ 𝑉 𝑥 = 𝐴 ∨ ∃𝑖 ∈ 𝐼 𝑥 = 𝐶)}) |