MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1iun Structured version   Visualization version   GIF version

Theorem f1iun 7902
Description: The union of a chain (with respect to inclusion) of one-to-one functions is a one-to-one function. (Contributed by Mario Carneiro, 20-May-2013.) (Revised by Mario Carneiro, 24-Jun-2015.) (Proof shortened by AV, 5-Nov-2023.)
Hypotheses
Ref Expression
fiun.1 (𝑥 = 𝑦𝐵 = 𝐶)
fiun.2 𝐵 ∈ V
Assertion
Ref Expression
f1iun (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → 𝑥𝐴 𝐵: 𝑥𝐴 𝐷1-1𝑆)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑥,𝐶   𝑥,𝑦   𝑥,𝑆
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑦)   𝐷(𝑥,𝑦)   𝑆(𝑦)

Proof of Theorem f1iun
Dummy variables 𝑣 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3448 . . . . . . . . . 10 𝑢 ∈ V
2 eqeq1 2733 . . . . . . . . . . 11 (𝑧 = 𝑢 → (𝑧 = 𝐵𝑢 = 𝐵))
32rexbidv 3157 . . . . . . . . . 10 (𝑧 = 𝑢 → (∃𝑥𝐴 𝑧 = 𝐵 ↔ ∃𝑥𝐴 𝑢 = 𝐵))
41, 3elab 3643 . . . . . . . . 9 (𝑢 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ↔ ∃𝑥𝐴 𝑢 = 𝐵)
5 r19.29 3094 . . . . . . . . . 10 ((∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ ∃𝑥𝐴 𝑢 = 𝐵) → ∃𝑥𝐴 ((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵))
6 nfv 1914 . . . . . . . . . . . 12 𝑥(Fun 𝑢 ∧ Fun 𝑢)
7 nfre1 3260 . . . . . . . . . . . . . 14 𝑥𝑥𝐴 𝑧 = 𝐵
87nfab 2897 . . . . . . . . . . . . 13 𝑥{𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}
9 nfv 1914 . . . . . . . . . . . . 13 𝑥(𝑢𝑣𝑣𝑢)
108, 9nfralw 3283 . . . . . . . . . . . 12 𝑥𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)
116, 10nfan 1899 . . . . . . . . . . 11 𝑥((Fun 𝑢 ∧ Fun 𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢))
12 f1eq1 6733 . . . . . . . . . . . . . . . 16 (𝑢 = 𝐵 → (𝑢:𝐷1-1𝑆𝐵:𝐷1-1𝑆))
1312biimparc 479 . . . . . . . . . . . . . . 15 ((𝐵:𝐷1-1𝑆𝑢 = 𝐵) → 𝑢:𝐷1-1𝑆)
14 df-f1 6504 . . . . . . . . . . . . . . . 16 (𝑢:𝐷1-1𝑆 ↔ (𝑢:𝐷𝑆 ∧ Fun 𝑢))
15 ffun 6673 . . . . . . . . . . . . . . . . 17 (𝑢:𝐷𝑆 → Fun 𝑢)
1615anim1i 615 . . . . . . . . . . . . . . . 16 ((𝑢:𝐷𝑆 ∧ Fun 𝑢) → (Fun 𝑢 ∧ Fun 𝑢))
1714, 16sylbi 217 . . . . . . . . . . . . . . 15 (𝑢:𝐷1-1𝑆 → (Fun 𝑢 ∧ Fun 𝑢))
1813, 17syl 17 . . . . . . . . . . . . . 14 ((𝐵:𝐷1-1𝑆𝑢 = 𝐵) → (Fun 𝑢 ∧ Fun 𝑢))
1918adantlr 715 . . . . . . . . . . . . 13 (((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) → (Fun 𝑢 ∧ Fun 𝑢))
20 f1f 6738 . . . . . . . . . . . . . 14 (𝐵:𝐷1-1𝑆𝐵:𝐷𝑆)
21 fiun.1 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦𝐵 = 𝐶)
2221fiunlem 7900 . . . . . . . . . . . . . 14 (((𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) → ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢))
2320, 22sylanl1 680 . . . . . . . . . . . . 13 (((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) → ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢))
2419, 23jca 511 . . . . . . . . . . . 12 (((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) → ((Fun 𝑢 ∧ Fun 𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)))
2524a1i 11 . . . . . . . . . . 11 (𝑥𝐴 → (((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) → ((Fun 𝑢 ∧ Fun 𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢))))
2611, 25rexlimi 3235 . . . . . . . . . 10 (∃𝑥𝐴 ((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) → ((Fun 𝑢 ∧ Fun 𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)))
275, 26syl 17 . . . . . . . . 9 ((∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ ∃𝑥𝐴 𝑢 = 𝐵) → ((Fun 𝑢 ∧ Fun 𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)))
284, 27sylan2b 594 . . . . . . . 8 ((∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}) → ((Fun 𝑢 ∧ Fun 𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)))
2928ralrimiva 3125 . . . . . . 7 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → ∀𝑢 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ((Fun 𝑢 ∧ Fun 𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)))
30 fun11uni 7889 . . . . . . 7 (∀𝑢 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ((Fun 𝑢 ∧ Fun 𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)) → (Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ∧ Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}))
3129, 30syl 17 . . . . . 6 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → (Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ∧ Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}))
3231simpld 494 . . . . 5 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵})
33 fiun.2 . . . . . . 7 𝐵 ∈ V
3433dfiun2 4992 . . . . . 6 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}
3534funeqi 6521 . . . . 5 (Fun 𝑥𝐴 𝐵 ↔ Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵})
3632, 35sylibr 234 . . . 4 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → Fun 𝑥𝐴 𝐵)
371eldm2 5855 . . . . . . . . 9 (𝑢 ∈ dom 𝐵 ↔ ∃𝑣𝑢, 𝑣⟩ ∈ 𝐵)
38 f1dm 6742 . . . . . . . . . 10 (𝐵:𝐷1-1𝑆 → dom 𝐵 = 𝐷)
3938eleq2d 2814 . . . . . . . . 9 (𝐵:𝐷1-1𝑆 → (𝑢 ∈ dom 𝐵𝑢𝐷))
4037, 39bitr3id 285 . . . . . . . 8 (𝐵:𝐷1-1𝑆 → (∃𝑣𝑢, 𝑣⟩ ∈ 𝐵𝑢𝐷))
4140adantr 480 . . . . . . 7 ((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → (∃𝑣𝑢, 𝑣⟩ ∈ 𝐵𝑢𝐷))
4241ralrexbid 3087 . . . . . 6 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → (∃𝑥𝐴𝑣𝑢, 𝑣⟩ ∈ 𝐵 ↔ ∃𝑥𝐴 𝑢𝐷))
43 eliun 4955 . . . . . . . 8 (⟨𝑢, 𝑣⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴𝑢, 𝑣⟩ ∈ 𝐵)
4443exbii 1848 . . . . . . 7 (∃𝑣𝑢, 𝑣⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑣𝑥𝐴𝑢, 𝑣⟩ ∈ 𝐵)
451eldm2 5855 . . . . . . 7 (𝑢 ∈ dom 𝑥𝐴 𝐵 ↔ ∃𝑣𝑢, 𝑣⟩ ∈ 𝑥𝐴 𝐵)
46 rexcom4 3262 . . . . . . 7 (∃𝑥𝐴𝑣𝑢, 𝑣⟩ ∈ 𝐵 ↔ ∃𝑣𝑥𝐴𝑢, 𝑣⟩ ∈ 𝐵)
4744, 45, 463bitr4i 303 . . . . . 6 (𝑢 ∈ dom 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴𝑣𝑢, 𝑣⟩ ∈ 𝐵)
48 eliun 4955 . . . . . 6 (𝑢 𝑥𝐴 𝐷 ↔ ∃𝑥𝐴 𝑢𝐷)
4942, 47, 483bitr4g 314 . . . . 5 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → (𝑢 ∈ dom 𝑥𝐴 𝐵𝑢 𝑥𝐴 𝐷))
5049eqrdv 2727 . . . 4 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → dom 𝑥𝐴 𝐵 = 𝑥𝐴 𝐷)
51 df-fn 6502 . . . 4 ( 𝑥𝐴 𝐵 Fn 𝑥𝐴 𝐷 ↔ (Fun 𝑥𝐴 𝐵 ∧ dom 𝑥𝐴 𝐵 = 𝑥𝐴 𝐷))
5236, 50, 51sylanbrc 583 . . 3 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → 𝑥𝐴 𝐵 Fn 𝑥𝐴 𝐷)
53 rniun 6108 . . . 4 ran 𝑥𝐴 𝐵 = 𝑥𝐴 ran 𝐵
5420frnd 6678 . . . . . . 7 (𝐵:𝐷1-1𝑆 → ran 𝐵𝑆)
5554adantr 480 . . . . . 6 ((𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → ran 𝐵𝑆)
5655ralimi 3066 . . . . 5 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → ∀𝑥𝐴 ran 𝐵𝑆)
57 iunss 5004 . . . . 5 ( 𝑥𝐴 ran 𝐵𝑆 ↔ ∀𝑥𝐴 ran 𝐵𝑆)
5856, 57sylibr 234 . . . 4 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → 𝑥𝐴 ran 𝐵𝑆)
5953, 58eqsstrid 3982 . . 3 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → ran 𝑥𝐴 𝐵𝑆)
60 df-f 6503 . . 3 ( 𝑥𝐴 𝐵: 𝑥𝐴 𝐷𝑆 ↔ ( 𝑥𝐴 𝐵 Fn 𝑥𝐴 𝐷 ∧ ran 𝑥𝐴 𝐵𝑆))
6152, 59, 60sylanbrc 583 . 2 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → 𝑥𝐴 𝐵: 𝑥𝐴 𝐷𝑆)
6231simprd 495 . . 3 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵})
6334cnveqi 5828 . . . 4 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}
6463funeqi 6521 . . 3 (Fun 𝑥𝐴 𝐵 ↔ Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵})
6562, 64sylibr 234 . 2 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → Fun 𝑥𝐴 𝐵)
66 df-f1 6504 . 2 ( 𝑥𝐴 𝐵: 𝑥𝐴 𝐷1-1𝑆 ↔ ( 𝑥𝐴 𝐵: 𝑥𝐴 𝐷𝑆 ∧ Fun 𝑥𝐴 𝐵))
6761, 65, 66sylanbrc 583 1 (∀𝑥𝐴 (𝐵:𝐷1-1𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → 𝑥𝐴 𝐵: 𝑥𝐴 𝐷1-1𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wral 3044  wrex 3053  Vcvv 3444  wss 3911  cop 4591   cuni 4867   ciun 4951  ccnv 5630  dom cdm 5631  ran crn 5632  Fun wfun 6493   Fn wfn 6494  wf 6495  1-1wf1 6496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504
This theorem is referenced by:  ackbij2  10171
  Copyright terms: Public domain W3C validator