Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmopab3rexdif Structured version   Visualization version   GIF version

Theorem dmopab3rexdif 32652
Description: The domain of an ordered pair class abstraction with three nested restricted existential quantifiers with differences. (Contributed by AV, 25-Oct-2023.)
Assertion
Ref Expression
dmopab3rexdif ((∀𝑢𝑈 (∀𝑣𝑈 𝐵𝑋 ∧ ∀𝑖𝐼 𝐷𝑊) ∧ 𝑆𝑈) → dom {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (𝑈𝑆)(∃𝑣𝑈 (𝑥 = 𝐴𝑦 = 𝐵) ∨ ∃𝑖𝐼 (𝑥 = 𝐶𝑦 = 𝐷)) ∨ ∃𝑢𝑆𝑣 ∈ (𝑈𝑆)(𝑥 = 𝐴𝑦 = 𝐵))} = {𝑥 ∣ (∃𝑢 ∈ (𝑈𝑆)(∃𝑣𝑈 𝑥 = 𝐴 ∨ ∃𝑖𝐼 𝑥 = 𝐶) ∨ ∃𝑢𝑆𝑣 ∈ (𝑈𝑆)𝑥 = 𝐴)})
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑖,𝐼,𝑥,𝑦   𝑢,𝑆,𝑣,𝑥,𝑦   𝑢,𝑈,𝑣,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑣,𝑢,𝑖)   𝐵(𝑣,𝑢,𝑖)   𝐶(𝑣,𝑢,𝑖)   𝐷(𝑣,𝑢,𝑖)   𝑆(𝑖)   𝑈(𝑖)   𝐼(𝑣,𝑢)   𝑊(𝑥,𝑦,𝑣,𝑢,𝑖)   𝑋(𝑥,𝑦,𝑣,𝑢,𝑖)

Proof of Theorem dmopab3rexdif
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 rexcom4 3249 . . . . . . . . . 10 (∃𝑣𝑈𝑦(𝑧 = 𝐴𝑦 = 𝐵) ↔ ∃𝑦𝑣𝑈 (𝑧 = 𝐴𝑦 = 𝐵))
2 rexcom4 3249 . . . . . . . . . 10 (∃𝑖𝐼𝑦(𝑧 = 𝐶𝑦 = 𝐷) ↔ ∃𝑦𝑖𝐼 (𝑧 = 𝐶𝑦 = 𝐷))
31, 2orbi12i 911 . . . . . . . . 9 ((∃𝑣𝑈𝑦(𝑧 = 𝐴𝑦 = 𝐵) ∨ ∃𝑖𝐼𝑦(𝑧 = 𝐶𝑦 = 𝐷)) ↔ (∃𝑦𝑣𝑈 (𝑧 = 𝐴𝑦 = 𝐵) ∨ ∃𝑦𝑖𝐼 (𝑧 = 𝐶𝑦 = 𝐷)))
4 19.43 1883 . . . . . . . . 9 (∃𝑦(∃𝑣𝑈 (𝑧 = 𝐴𝑦 = 𝐵) ∨ ∃𝑖𝐼 (𝑧 = 𝐶𝑦 = 𝐷)) ↔ (∃𝑦𝑣𝑈 (𝑧 = 𝐴𝑦 = 𝐵) ∨ ∃𝑦𝑖𝐼 (𝑧 = 𝐶𝑦 = 𝐷)))
53, 4bitr4i 280 . . . . . . . 8 ((∃𝑣𝑈𝑦(𝑧 = 𝐴𝑦 = 𝐵) ∨ ∃𝑖𝐼𝑦(𝑧 = 𝐶𝑦 = 𝐷)) ↔ ∃𝑦(∃𝑣𝑈 (𝑧 = 𝐴𝑦 = 𝐵) ∨ ∃𝑖𝐼 (𝑧 = 𝐶𝑦 = 𝐷)))
65rexbii 3247 . . . . . . 7 (∃𝑢 ∈ (𝑈𝑆)(∃𝑣𝑈𝑦(𝑧 = 𝐴𝑦 = 𝐵) ∨ ∃𝑖𝐼𝑦(𝑧 = 𝐶𝑦 = 𝐷)) ↔ ∃𝑢 ∈ (𝑈𝑆)∃𝑦(∃𝑣𝑈 (𝑧 = 𝐴𝑦 = 𝐵) ∨ ∃𝑖𝐼 (𝑧 = 𝐶𝑦 = 𝐷)))
7 rexcom4 3249 . . . . . . 7 (∃𝑢 ∈ (𝑈𝑆)∃𝑦(∃𝑣𝑈 (𝑧 = 𝐴𝑦 = 𝐵) ∨ ∃𝑖𝐼 (𝑧 = 𝐶𝑦 = 𝐷)) ↔ ∃𝑦𝑢 ∈ (𝑈𝑆)(∃𝑣𝑈 (𝑧 = 𝐴𝑦 = 𝐵) ∨ ∃𝑖𝐼 (𝑧 = 𝐶𝑦 = 𝐷)))
86, 7bitri 277 . . . . . 6 (∃𝑢 ∈ (𝑈𝑆)(∃𝑣𝑈𝑦(𝑧 = 𝐴𝑦 = 𝐵) ∨ ∃𝑖𝐼𝑦(𝑧 = 𝐶𝑦 = 𝐷)) ↔ ∃𝑦𝑢 ∈ (𝑈𝑆)(∃𝑣𝑈 (𝑧 = 𝐴𝑦 = 𝐵) ∨ ∃𝑖𝐼 (𝑧 = 𝐶𝑦 = 𝐷)))
9 rexcom4 3249 . . . . . . . 8 (∃𝑣 ∈ (𝑈𝑆)∃𝑦(𝑧 = 𝐴𝑦 = 𝐵) ↔ ∃𝑦𝑣 ∈ (𝑈𝑆)(𝑧 = 𝐴𝑦 = 𝐵))
109rexbii 3247 . . . . . . 7 (∃𝑢𝑆𝑣 ∈ (𝑈𝑆)∃𝑦(𝑧 = 𝐴𝑦 = 𝐵) ↔ ∃𝑢𝑆𝑦𝑣 ∈ (𝑈𝑆)(𝑧 = 𝐴𝑦 = 𝐵))
11 rexcom4 3249 . . . . . . 7 (∃𝑢𝑆𝑦𝑣 ∈ (𝑈𝑆)(𝑧 = 𝐴𝑦 = 𝐵) ↔ ∃𝑦𝑢𝑆𝑣 ∈ (𝑈𝑆)(𝑧 = 𝐴𝑦 = 𝐵))
1210, 11bitri 277 . . . . . 6 (∃𝑢𝑆𝑣 ∈ (𝑈𝑆)∃𝑦(𝑧 = 𝐴𝑦 = 𝐵) ↔ ∃𝑦𝑢𝑆𝑣 ∈ (𝑈𝑆)(𝑧 = 𝐴𝑦 = 𝐵))
138, 12orbi12i 911 . . . . 5 ((∃𝑢 ∈ (𝑈𝑆)(∃𝑣𝑈𝑦(𝑧 = 𝐴𝑦 = 𝐵) ∨ ∃𝑖𝐼𝑦(𝑧 = 𝐶𝑦 = 𝐷)) ∨ ∃𝑢𝑆𝑣 ∈ (𝑈𝑆)∃𝑦(𝑧 = 𝐴𝑦 = 𝐵)) ↔ (∃𝑦𝑢 ∈ (𝑈𝑆)(∃𝑣𝑈 (𝑧 = 𝐴𝑦 = 𝐵) ∨ ∃𝑖𝐼 (𝑧 = 𝐶𝑦 = 𝐷)) ∨ ∃𝑦𝑢𝑆𝑣 ∈ (𝑈𝑆)(𝑧 = 𝐴𝑦 = 𝐵)))
14 19.43 1883 . . . . 5 (∃𝑦(∃𝑢 ∈ (𝑈𝑆)(∃𝑣𝑈 (𝑧 = 𝐴𝑦 = 𝐵) ∨ ∃𝑖𝐼 (𝑧 = 𝐶𝑦 = 𝐷)) ∨ ∃𝑢𝑆𝑣 ∈ (𝑈𝑆)(𝑧 = 𝐴𝑦 = 𝐵)) ↔ (∃𝑦𝑢 ∈ (𝑈𝑆)(∃𝑣𝑈 (𝑧 = 𝐴𝑦 = 𝐵) ∨ ∃𝑖𝐼 (𝑧 = 𝐶𝑦 = 𝐷)) ∨ ∃𝑦𝑢𝑆𝑣 ∈ (𝑈𝑆)(𝑧 = 𝐴𝑦 = 𝐵)))
1513, 14bitr4i 280 . . . 4 ((∃𝑢 ∈ (𝑈𝑆)(∃𝑣𝑈𝑦(𝑧 = 𝐴𝑦 = 𝐵) ∨ ∃𝑖𝐼𝑦(𝑧 = 𝐶𝑦 = 𝐷)) ∨ ∃𝑢𝑆𝑣 ∈ (𝑈𝑆)∃𝑦(𝑧 = 𝐴𝑦 = 𝐵)) ↔ ∃𝑦(∃𝑢 ∈ (𝑈𝑆)(∃𝑣𝑈 (𝑧 = 𝐴𝑦 = 𝐵) ∨ ∃𝑖𝐼 (𝑧 = 𝐶𝑦 = 𝐷)) ∨ ∃𝑢𝑆𝑣 ∈ (𝑈𝑆)(𝑧 = 𝐴𝑦 = 𝐵)))
16 difssd 4109 . . . . . . . 8 (𝑆𝑈 → (𝑈𝑆) ⊆ 𝑈)
17 ssralv 4033 . . . . . . . 8 ((𝑈𝑆) ⊆ 𝑈 → (∀𝑢𝑈 (∀𝑣𝑈 𝐵𝑋 ∧ ∀𝑖𝐼 𝐷𝑊) → ∀𝑢 ∈ (𝑈𝑆)(∀𝑣𝑈 𝐵𝑋 ∧ ∀𝑖𝐼 𝐷𝑊)))
1816, 17syl 17 . . . . . . 7 (𝑆𝑈 → (∀𝑢𝑈 (∀𝑣𝑈 𝐵𝑋 ∧ ∀𝑖𝐼 𝐷𝑊) → ∀𝑢 ∈ (𝑈𝑆)(∀𝑣𝑈 𝐵𝑋 ∧ ∀𝑖𝐼 𝐷𝑊)))
1918impcom 410 . . . . . 6 ((∀𝑢𝑈 (∀𝑣𝑈 𝐵𝑋 ∧ ∀𝑖𝐼 𝐷𝑊) ∧ 𝑆𝑈) → ∀𝑢 ∈ (𝑈𝑆)(∀𝑣𝑈 𝐵𝑋 ∧ ∀𝑖𝐼 𝐷𝑊))
20 simpl 485 . . . . . . . . . . . 12 ((𝑧 = 𝐴𝑦 = 𝐵) → 𝑧 = 𝐴)
2120exlimiv 1931 . . . . . . . . . . 11 (∃𝑦(𝑧 = 𝐴𝑦 = 𝐵) → 𝑧 = 𝐴)
22 elisset 3505 . . . . . . . . . . . 12 (𝐵𝑋 → ∃𝑦 𝑦 = 𝐵)
23 ibar 531 . . . . . . . . . . . . . 14 (𝑧 = 𝐴 → (𝑦 = 𝐵 ↔ (𝑧 = 𝐴𝑦 = 𝐵)))
2423bicomd 225 . . . . . . . . . . . . 13 (𝑧 = 𝐴 → ((𝑧 = 𝐴𝑦 = 𝐵) ↔ 𝑦 = 𝐵))
2524exbidv 1922 . . . . . . . . . . . 12 (𝑧 = 𝐴 → (∃𝑦(𝑧 = 𝐴𝑦 = 𝐵) ↔ ∃𝑦 𝑦 = 𝐵))
2622, 25syl5ibrcom 249 . . . . . . . . . . 11 (𝐵𝑋 → (𝑧 = 𝐴 → ∃𝑦(𝑧 = 𝐴𝑦 = 𝐵)))
2721, 26impbid2 228 . . . . . . . . . 10 (𝐵𝑋 → (∃𝑦(𝑧 = 𝐴𝑦 = 𝐵) ↔ 𝑧 = 𝐴))
2827ralrexbid 3322 . . . . . . . . 9 (∀𝑣𝑈 𝐵𝑋 → (∃𝑣𝑈𝑦(𝑧 = 𝐴𝑦 = 𝐵) ↔ ∃𝑣𝑈 𝑧 = 𝐴))
2928adantr 483 . . . . . . . 8 ((∀𝑣𝑈 𝐵𝑋 ∧ ∀𝑖𝐼 𝐷𝑊) → (∃𝑣𝑈𝑦(𝑧 = 𝐴𝑦 = 𝐵) ↔ ∃𝑣𝑈 𝑧 = 𝐴))
30 simpl 485 . . . . . . . . . . . 12 ((𝑧 = 𝐶𝑦 = 𝐷) → 𝑧 = 𝐶)
3130exlimiv 1931 . . . . . . . . . . 11 (∃𝑦(𝑧 = 𝐶𝑦 = 𝐷) → 𝑧 = 𝐶)
32 elisset 3505 . . . . . . . . . . . 12 (𝐷𝑊 → ∃𝑦 𝑦 = 𝐷)
33 ibar 531 . . . . . . . . . . . . . 14 (𝑧 = 𝐶 → (𝑦 = 𝐷 ↔ (𝑧 = 𝐶𝑦 = 𝐷)))
3433bicomd 225 . . . . . . . . . . . . 13 (𝑧 = 𝐶 → ((𝑧 = 𝐶𝑦 = 𝐷) ↔ 𝑦 = 𝐷))
3534exbidv 1922 . . . . . . . . . . . 12 (𝑧 = 𝐶 → (∃𝑦(𝑧 = 𝐶𝑦 = 𝐷) ↔ ∃𝑦 𝑦 = 𝐷))
3632, 35syl5ibrcom 249 . . . . . . . . . . 11 (𝐷𝑊 → (𝑧 = 𝐶 → ∃𝑦(𝑧 = 𝐶𝑦 = 𝐷)))
3731, 36impbid2 228 . . . . . . . . . 10 (𝐷𝑊 → (∃𝑦(𝑧 = 𝐶𝑦 = 𝐷) ↔ 𝑧 = 𝐶))
3837ralrexbid 3322 . . . . . . . . 9 (∀𝑖𝐼 𝐷𝑊 → (∃𝑖𝐼𝑦(𝑧 = 𝐶𝑦 = 𝐷) ↔ ∃𝑖𝐼 𝑧 = 𝐶))
3938adantl 484 . . . . . . . 8 ((∀𝑣𝑈 𝐵𝑋 ∧ ∀𝑖𝐼 𝐷𝑊) → (∃𝑖𝐼𝑦(𝑧 = 𝐶𝑦 = 𝐷) ↔ ∃𝑖𝐼 𝑧 = 𝐶))
4029, 39orbi12d 915 . . . . . . 7 ((∀𝑣𝑈 𝐵𝑋 ∧ ∀𝑖𝐼 𝐷𝑊) → ((∃𝑣𝑈𝑦(𝑧 = 𝐴𝑦 = 𝐵) ∨ ∃𝑖𝐼𝑦(𝑧 = 𝐶𝑦 = 𝐷)) ↔ (∃𝑣𝑈 𝑧 = 𝐴 ∨ ∃𝑖𝐼 𝑧 = 𝐶)))
4140ralrexbid 3322 . . . . . 6 (∀𝑢 ∈ (𝑈𝑆)(∀𝑣𝑈 𝐵𝑋 ∧ ∀𝑖𝐼 𝐷𝑊) → (∃𝑢 ∈ (𝑈𝑆)(∃𝑣𝑈𝑦(𝑧 = 𝐴𝑦 = 𝐵) ∨ ∃𝑖𝐼𝑦(𝑧 = 𝐶𝑦 = 𝐷)) ↔ ∃𝑢 ∈ (𝑈𝑆)(∃𝑣𝑈 𝑧 = 𝐴 ∨ ∃𝑖𝐼 𝑧 = 𝐶)))
4219, 41syl 17 . . . . 5 ((∀𝑢𝑈 (∀𝑣𝑈 𝐵𝑋 ∧ ∀𝑖𝐼 𝐷𝑊) ∧ 𝑆𝑈) → (∃𝑢 ∈ (𝑈𝑆)(∃𝑣𝑈𝑦(𝑧 = 𝐴𝑦 = 𝐵) ∨ ∃𝑖𝐼𝑦(𝑧 = 𝐶𝑦 = 𝐷)) ↔ ∃𝑢 ∈ (𝑈𝑆)(∃𝑣𝑈 𝑧 = 𝐴 ∨ ∃𝑖𝐼 𝑧 = 𝐶)))
43 ssralv 4033 . . . . . . . 8 (𝑆𝑈 → (∀𝑢𝑈 (∀𝑣𝑈 𝐵𝑋 ∧ ∀𝑖𝐼 𝐷𝑊) → ∀𝑢𝑆 (∀𝑣𝑈 𝐵𝑋 ∧ ∀𝑖𝐼 𝐷𝑊)))
44 ssralv 4033 . . . . . . . . . . 11 ((𝑈𝑆) ⊆ 𝑈 → (∀𝑣𝑈 𝐵𝑋 → ∀𝑣 ∈ (𝑈𝑆)𝐵𝑋))
4516, 44syl 17 . . . . . . . . . 10 (𝑆𝑈 → (∀𝑣𝑈 𝐵𝑋 → ∀𝑣 ∈ (𝑈𝑆)𝐵𝑋))
4645adantrd 494 . . . . . . . . 9 (𝑆𝑈 → ((∀𝑣𝑈 𝐵𝑋 ∧ ∀𝑖𝐼 𝐷𝑊) → ∀𝑣 ∈ (𝑈𝑆)𝐵𝑋))
4746ralimdv 3178 . . . . . . . 8 (𝑆𝑈 → (∀𝑢𝑆 (∀𝑣𝑈 𝐵𝑋 ∧ ∀𝑖𝐼 𝐷𝑊) → ∀𝑢𝑆𝑣 ∈ (𝑈𝑆)𝐵𝑋))
4843, 47syld 47 . . . . . . 7 (𝑆𝑈 → (∀𝑢𝑈 (∀𝑣𝑈 𝐵𝑋 ∧ ∀𝑖𝐼 𝐷𝑊) → ∀𝑢𝑆𝑣 ∈ (𝑈𝑆)𝐵𝑋))
4948impcom 410 . . . . . 6 ((∀𝑢𝑈 (∀𝑣𝑈 𝐵𝑋 ∧ ∀𝑖𝐼 𝐷𝑊) ∧ 𝑆𝑈) → ∀𝑢𝑆𝑣 ∈ (𝑈𝑆)𝐵𝑋)
5027ralrexbid 3322 . . . . . . 7 (∀𝑣 ∈ (𝑈𝑆)𝐵𝑋 → (∃𝑣 ∈ (𝑈𝑆)∃𝑦(𝑧 = 𝐴𝑦 = 𝐵) ↔ ∃𝑣 ∈ (𝑈𝑆)𝑧 = 𝐴))
5150ralrexbid 3322 . . . . . 6 (∀𝑢𝑆𝑣 ∈ (𝑈𝑆)𝐵𝑋 → (∃𝑢𝑆𝑣 ∈ (𝑈𝑆)∃𝑦(𝑧 = 𝐴𝑦 = 𝐵) ↔ ∃𝑢𝑆𝑣 ∈ (𝑈𝑆)𝑧 = 𝐴))
5249, 51syl 17 . . . . 5 ((∀𝑢𝑈 (∀𝑣𝑈 𝐵𝑋 ∧ ∀𝑖𝐼 𝐷𝑊) ∧ 𝑆𝑈) → (∃𝑢𝑆𝑣 ∈ (𝑈𝑆)∃𝑦(𝑧 = 𝐴𝑦 = 𝐵) ↔ ∃𝑢𝑆𝑣 ∈ (𝑈𝑆)𝑧 = 𝐴))
5342, 52orbi12d 915 . . . 4 ((∀𝑢𝑈 (∀𝑣𝑈 𝐵𝑋 ∧ ∀𝑖𝐼 𝐷𝑊) ∧ 𝑆𝑈) → ((∃𝑢 ∈ (𝑈𝑆)(∃𝑣𝑈𝑦(𝑧 = 𝐴𝑦 = 𝐵) ∨ ∃𝑖𝐼𝑦(𝑧 = 𝐶𝑦 = 𝐷)) ∨ ∃𝑢𝑆𝑣 ∈ (𝑈𝑆)∃𝑦(𝑧 = 𝐴𝑦 = 𝐵)) ↔ (∃𝑢 ∈ (𝑈𝑆)(∃𝑣𝑈 𝑧 = 𝐴 ∨ ∃𝑖𝐼 𝑧 = 𝐶) ∨ ∃𝑢𝑆𝑣 ∈ (𝑈𝑆)𝑧 = 𝐴)))
5415, 53syl5bbr 287 . . 3 ((∀𝑢𝑈 (∀𝑣𝑈 𝐵𝑋 ∧ ∀𝑖𝐼 𝐷𝑊) ∧ 𝑆𝑈) → (∃𝑦(∃𝑢 ∈ (𝑈𝑆)(∃𝑣𝑈 (𝑧 = 𝐴𝑦 = 𝐵) ∨ ∃𝑖𝐼 (𝑧 = 𝐶𝑦 = 𝐷)) ∨ ∃𝑢𝑆𝑣 ∈ (𝑈𝑆)(𝑧 = 𝐴𝑦 = 𝐵)) ↔ (∃𝑢 ∈ (𝑈𝑆)(∃𝑣𝑈 𝑧 = 𝐴 ∨ ∃𝑖𝐼 𝑧 = 𝐶) ∨ ∃𝑢𝑆𝑣 ∈ (𝑈𝑆)𝑧 = 𝐴)))
55 eqeq1 2825 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥 = 𝐴𝑧 = 𝐴))
5655anbi1d 631 . . . . . . . . 9 (𝑥 = 𝑧 → ((𝑥 = 𝐴𝑦 = 𝐵) ↔ (𝑧 = 𝐴𝑦 = 𝐵)))
5756rexbidv 3297 . . . . . . . 8 (𝑥 = 𝑧 → (∃𝑣𝑈 (𝑥 = 𝐴𝑦 = 𝐵) ↔ ∃𝑣𝑈 (𝑧 = 𝐴𝑦 = 𝐵)))
58 eqeq1 2825 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥 = 𝐶𝑧 = 𝐶))
5958anbi1d 631 . . . . . . . . 9 (𝑥 = 𝑧 → ((𝑥 = 𝐶𝑦 = 𝐷) ↔ (𝑧 = 𝐶𝑦 = 𝐷)))
6059rexbidv 3297 . . . . . . . 8 (𝑥 = 𝑧 → (∃𝑖𝐼 (𝑥 = 𝐶𝑦 = 𝐷) ↔ ∃𝑖𝐼 (𝑧 = 𝐶𝑦 = 𝐷)))
6157, 60orbi12d 915 . . . . . . 7 (𝑥 = 𝑧 → ((∃𝑣𝑈 (𝑥 = 𝐴𝑦 = 𝐵) ∨ ∃𝑖𝐼 (𝑥 = 𝐶𝑦 = 𝐷)) ↔ (∃𝑣𝑈 (𝑧 = 𝐴𝑦 = 𝐵) ∨ ∃𝑖𝐼 (𝑧 = 𝐶𝑦 = 𝐷))))
6261rexbidv 3297 . . . . . 6 (𝑥 = 𝑧 → (∃𝑢 ∈ (𝑈𝑆)(∃𝑣𝑈 (𝑥 = 𝐴𝑦 = 𝐵) ∨ ∃𝑖𝐼 (𝑥 = 𝐶𝑦 = 𝐷)) ↔ ∃𝑢 ∈ (𝑈𝑆)(∃𝑣𝑈 (𝑧 = 𝐴𝑦 = 𝐵) ∨ ∃𝑖𝐼 (𝑧 = 𝐶𝑦 = 𝐷))))
63562rexbidv 3300 . . . . . 6 (𝑥 = 𝑧 → (∃𝑢𝑆𝑣 ∈ (𝑈𝑆)(𝑥 = 𝐴𝑦 = 𝐵) ↔ ∃𝑢𝑆𝑣 ∈ (𝑈𝑆)(𝑧 = 𝐴𝑦 = 𝐵)))
6462, 63orbi12d 915 . . . . 5 (𝑥 = 𝑧 → ((∃𝑢 ∈ (𝑈𝑆)(∃𝑣𝑈 (𝑥 = 𝐴𝑦 = 𝐵) ∨ ∃𝑖𝐼 (𝑥 = 𝐶𝑦 = 𝐷)) ∨ ∃𝑢𝑆𝑣 ∈ (𝑈𝑆)(𝑥 = 𝐴𝑦 = 𝐵)) ↔ (∃𝑢 ∈ (𝑈𝑆)(∃𝑣𝑈 (𝑧 = 𝐴𝑦 = 𝐵) ∨ ∃𝑖𝐼 (𝑧 = 𝐶𝑦 = 𝐷)) ∨ ∃𝑢𝑆𝑣 ∈ (𝑈𝑆)(𝑧 = 𝐴𝑦 = 𝐵))))
6564dmopabelb 5785 . . . 4 (𝑧 ∈ V → (𝑧 ∈ dom {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (𝑈𝑆)(∃𝑣𝑈 (𝑥 = 𝐴𝑦 = 𝐵) ∨ ∃𝑖𝐼 (𝑥 = 𝐶𝑦 = 𝐷)) ∨ ∃𝑢𝑆𝑣 ∈ (𝑈𝑆)(𝑥 = 𝐴𝑦 = 𝐵))} ↔ ∃𝑦(∃𝑢 ∈ (𝑈𝑆)(∃𝑣𝑈 (𝑧 = 𝐴𝑦 = 𝐵) ∨ ∃𝑖𝐼 (𝑧 = 𝐶𝑦 = 𝐷)) ∨ ∃𝑢𝑆𝑣 ∈ (𝑈𝑆)(𝑧 = 𝐴𝑦 = 𝐵))))
6665elv 3499 . . 3 (𝑧 ∈ dom {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (𝑈𝑆)(∃𝑣𝑈 (𝑥 = 𝐴𝑦 = 𝐵) ∨ ∃𝑖𝐼 (𝑥 = 𝐶𝑦 = 𝐷)) ∨ ∃𝑢𝑆𝑣 ∈ (𝑈𝑆)(𝑥 = 𝐴𝑦 = 𝐵))} ↔ ∃𝑦(∃𝑢 ∈ (𝑈𝑆)(∃𝑣𝑈 (𝑧 = 𝐴𝑦 = 𝐵) ∨ ∃𝑖𝐼 (𝑧 = 𝐶𝑦 = 𝐷)) ∨ ∃𝑢𝑆𝑣 ∈ (𝑈𝑆)(𝑧 = 𝐴𝑦 = 𝐵)))
67 vex 3497 . . . 4 𝑧 ∈ V
6855rexbidv 3297 . . . . . . 7 (𝑥 = 𝑧 → (∃𝑣𝑈 𝑥 = 𝐴 ↔ ∃𝑣𝑈 𝑧 = 𝐴))
6958rexbidv 3297 . . . . . . 7 (𝑥 = 𝑧 → (∃𝑖𝐼 𝑥 = 𝐶 ↔ ∃𝑖𝐼 𝑧 = 𝐶))
7068, 69orbi12d 915 . . . . . 6 (𝑥 = 𝑧 → ((∃𝑣𝑈 𝑥 = 𝐴 ∨ ∃𝑖𝐼 𝑥 = 𝐶) ↔ (∃𝑣𝑈 𝑧 = 𝐴 ∨ ∃𝑖𝐼 𝑧 = 𝐶)))
7170rexbidv 3297 . . . . 5 (𝑥 = 𝑧 → (∃𝑢 ∈ (𝑈𝑆)(∃𝑣𝑈 𝑥 = 𝐴 ∨ ∃𝑖𝐼 𝑥 = 𝐶) ↔ ∃𝑢 ∈ (𝑈𝑆)(∃𝑣𝑈 𝑧 = 𝐴 ∨ ∃𝑖𝐼 𝑧 = 𝐶)))
72552rexbidv 3300 . . . . 5 (𝑥 = 𝑧 → (∃𝑢𝑆𝑣 ∈ (𝑈𝑆)𝑥 = 𝐴 ↔ ∃𝑢𝑆𝑣 ∈ (𝑈𝑆)𝑧 = 𝐴))
7371, 72orbi12d 915 . . . 4 (𝑥 = 𝑧 → ((∃𝑢 ∈ (𝑈𝑆)(∃𝑣𝑈 𝑥 = 𝐴 ∨ ∃𝑖𝐼 𝑥 = 𝐶) ∨ ∃𝑢𝑆𝑣 ∈ (𝑈𝑆)𝑥 = 𝐴) ↔ (∃𝑢 ∈ (𝑈𝑆)(∃𝑣𝑈 𝑧 = 𝐴 ∨ ∃𝑖𝐼 𝑧 = 𝐶) ∨ ∃𝑢𝑆𝑣 ∈ (𝑈𝑆)𝑧 = 𝐴)))
7467, 73elab 3667 . . 3 (𝑧 ∈ {𝑥 ∣ (∃𝑢 ∈ (𝑈𝑆)(∃𝑣𝑈 𝑥 = 𝐴 ∨ ∃𝑖𝐼 𝑥 = 𝐶) ∨ ∃𝑢𝑆𝑣 ∈ (𝑈𝑆)𝑥 = 𝐴)} ↔ (∃𝑢 ∈ (𝑈𝑆)(∃𝑣𝑈 𝑧 = 𝐴 ∨ ∃𝑖𝐼 𝑧 = 𝐶) ∨ ∃𝑢𝑆𝑣 ∈ (𝑈𝑆)𝑧 = 𝐴))
7554, 66, 743bitr4g 316 . 2 ((∀𝑢𝑈 (∀𝑣𝑈 𝐵𝑋 ∧ ∀𝑖𝐼 𝐷𝑊) ∧ 𝑆𝑈) → (𝑧 ∈ dom {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (𝑈𝑆)(∃𝑣𝑈 (𝑥 = 𝐴𝑦 = 𝐵) ∨ ∃𝑖𝐼 (𝑥 = 𝐶𝑦 = 𝐷)) ∨ ∃𝑢𝑆𝑣 ∈ (𝑈𝑆)(𝑥 = 𝐴𝑦 = 𝐵))} ↔ 𝑧 ∈ {𝑥 ∣ (∃𝑢 ∈ (𝑈𝑆)(∃𝑣𝑈 𝑥 = 𝐴 ∨ ∃𝑖𝐼 𝑥 = 𝐶) ∨ ∃𝑢𝑆𝑣 ∈ (𝑈𝑆)𝑥 = 𝐴)}))
7675eqrdv 2819 1 ((∀𝑢𝑈 (∀𝑣𝑈 𝐵𝑋 ∧ ∀𝑖𝐼 𝐷𝑊) ∧ 𝑆𝑈) → dom {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (𝑈𝑆)(∃𝑣𝑈 (𝑥 = 𝐴𝑦 = 𝐵) ∨ ∃𝑖𝐼 (𝑥 = 𝐶𝑦 = 𝐷)) ∨ ∃𝑢𝑆𝑣 ∈ (𝑈𝑆)(𝑥 = 𝐴𝑦 = 𝐵))} = {𝑥 ∣ (∃𝑢 ∈ (𝑈𝑆)(∃𝑣𝑈 𝑥 = 𝐴 ∨ ∃𝑖𝐼 𝑥 = 𝐶) ∨ ∃𝑢𝑆𝑣 ∈ (𝑈𝑆)𝑥 = 𝐴)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wex 1780  wcel 2114  {cab 2799  wral 3138  wrex 3139  Vcvv 3494  cdif 3933  wss 3936  {copab 5128  dom cdm 5555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-br 5067  df-opab 5129  df-dm 5565
This theorem is referenced by:  satffunlem2lem2  32653
  Copyright terms: Public domain W3C validator