| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > refrelcoss | Structured version Visualization version GIF version | ||
| Description: The class of cosets by 𝑅 is reflexive. (Contributed by Peter Mazsa, 4-Jul-2020.) |
| Ref | Expression |
|---|---|
| refrelcoss | ⊢ RefRel ≀ 𝑅 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | refrelcoss2 38500 | . 2 ⊢ (( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅) | |
| 2 | dfrefrel2 38551 | . 2 ⊢ ( RefRel ≀ 𝑅 ↔ (( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅)) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ RefRel ≀ 𝑅 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∩ cin 3901 ⊆ wss 3902 I cid 5510 × cxp 5614 dom cdm 5616 ran crn 5617 Rel wrel 5621 ≀ ccoss 38214 RefRel wrefrel 38220 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-coss 38447 df-refrel 38548 |
| This theorem is referenced by: eqvrelcoss 38653 |
| Copyright terms: Public domain | W3C validator |