Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refrelcoss Structured version   Visualization version   GIF version

Theorem refrelcoss 37388
Description: The class of cosets by 𝑅 is reflexive. (Contributed by Peter Mazsa, 4-Jul-2020.)
Assertion
Ref Expression
refrelcoss RefRel ≀ 𝑅

Proof of Theorem refrelcoss
StepHypRef Expression
1 refrelcoss2 37329 . 2 (( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅)
2 dfrefrel2 37380 . 2 ( RefRel ≀ 𝑅 ↔ (( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ⊆ ≀ 𝑅 ∧ Rel ≀ 𝑅))
31, 2mpbir 230 1 RefRel ≀ 𝑅
Colors of variables: wff setvar class
Syntax hints:  wa 396  cin 3947  wss 3948   I cid 5573   × cxp 5674  dom cdm 5676  ran crn 5677  Rel wrel 5681  ccoss 37038   RefRel wrefrel 37044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-coss 37276  df-refrel 37377
This theorem is referenced by:  eqvrelcoss  37482
  Copyright terms: Public domain W3C validator