|   | Mathbox for Peter Mazsa | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > refreleq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for reflexive relation. (Contributed by Peter Mazsa, 15-Apr-2019.) (Revised by Peter Mazsa, 23-Sep-2021.) | 
| Ref | Expression | 
|---|---|
| refreleq | ⊢ (𝑅 = 𝑆 → ( RefRel 𝑅 ↔ RefRel 𝑆)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dmeq 5914 | . . . . . 6 ⊢ (𝑅 = 𝑆 → dom 𝑅 = dom 𝑆) | |
| 2 | rneq 5947 | . . . . . 6 ⊢ (𝑅 = 𝑆 → ran 𝑅 = ran 𝑆) | |
| 3 | 1, 2 | xpeq12d 5716 | . . . . 5 ⊢ (𝑅 = 𝑆 → (dom 𝑅 × ran 𝑅) = (dom 𝑆 × ran 𝑆)) | 
| 4 | 3 | ineq2d 4220 | . . . 4 ⊢ (𝑅 = 𝑆 → ( I ∩ (dom 𝑅 × ran 𝑅)) = ( I ∩ (dom 𝑆 × ran 𝑆))) | 
| 5 | id 22 | . . . 4 ⊢ (𝑅 = 𝑆 → 𝑅 = 𝑆) | |
| 6 | 4, 5 | sseq12d 4017 | . . 3 ⊢ (𝑅 = 𝑆 → (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ↔ ( I ∩ (dom 𝑆 × ran 𝑆)) ⊆ 𝑆)) | 
| 7 | releq 5786 | . . 3 ⊢ (𝑅 = 𝑆 → (Rel 𝑅 ↔ Rel 𝑆)) | |
| 8 | 6, 7 | anbi12d 632 | . 2 ⊢ (𝑅 = 𝑆 → ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅) ↔ (( I ∩ (dom 𝑆 × ran 𝑆)) ⊆ 𝑆 ∧ Rel 𝑆))) | 
| 9 | dfrefrel2 38516 | . 2 ⊢ ( RefRel 𝑅 ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅)) | |
| 10 | dfrefrel2 38516 | . 2 ⊢ ( RefRel 𝑆 ↔ (( I ∩ (dom 𝑆 × ran 𝑆)) ⊆ 𝑆 ∧ Rel 𝑆)) | |
| 11 | 8, 9, 10 | 3bitr4g 314 | 1 ⊢ (𝑅 = 𝑆 → ( RefRel 𝑅 ↔ RefRel 𝑆)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∩ cin 3950 ⊆ wss 3951 I cid 5577 × cxp 5683 dom cdm 5685 ran crn 5686 Rel wrel 5690 RefRel wrefrel 38188 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-xp 5691 df-rel 5692 df-cnv 5693 df-dm 5695 df-rn 5696 df-res 5697 df-refrel 38513 | 
| This theorem is referenced by: eqvreleq 38603 | 
| Copyright terms: Public domain | W3C validator |