Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refreleq Structured version   Visualization version   GIF version

Theorem refreleq 36226
Description: Equality theorem for reflexive relation. (Contributed by Peter Mazsa, 15-Apr-2019.) (Revised by Peter Mazsa, 23-Sep-2021.)
Assertion
Ref Expression
refreleq (𝑅 = 𝑆 → ( RefRel 𝑅 ↔ RefRel 𝑆))

Proof of Theorem refreleq
StepHypRef Expression
1 dmeq 5748 . . . . . 6 (𝑅 = 𝑆 → dom 𝑅 = dom 𝑆)
2 rneq 5781 . . . . . 6 (𝑅 = 𝑆 → ran 𝑅 = ran 𝑆)
31, 2xpeq12d 5558 . . . . 5 (𝑅 = 𝑆 → (dom 𝑅 × ran 𝑅) = (dom 𝑆 × ran 𝑆))
43ineq2d 4119 . . . 4 (𝑅 = 𝑆 → ( I ∩ (dom 𝑅 × ran 𝑅)) = ( I ∩ (dom 𝑆 × ran 𝑆)))
5 id 22 . . . 4 (𝑅 = 𝑆𝑅 = 𝑆)
64, 5sseq12d 3927 . . 3 (𝑅 = 𝑆 → (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ↔ ( I ∩ (dom 𝑆 × ran 𝑆)) ⊆ 𝑆))
7 releq 5624 . . 3 (𝑅 = 𝑆 → (Rel 𝑅 ↔ Rel 𝑆))
86, 7anbi12d 633 . 2 (𝑅 = 𝑆 → ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅) ↔ (( I ∩ (dom 𝑆 × ran 𝑆)) ⊆ 𝑆 ∧ Rel 𝑆)))
9 dfrefrel2 36221 . 2 ( RefRel 𝑅 ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅))
10 dfrefrel2 36221 . 2 ( RefRel 𝑆 ↔ (( I ∩ (dom 𝑆 × ran 𝑆)) ⊆ 𝑆 ∧ Rel 𝑆))
118, 9, 103bitr4g 317 1 (𝑅 = 𝑆 → ( RefRel 𝑅 ↔ RefRel 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  cin 3859  wss 3860   I cid 5432   × cxp 5525  dom cdm 5527  ran crn 5528  Rel wrel 5532   RefRel wrefrel 35925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-12 2175  ax-ext 2729  ax-sep 5172  ax-nul 5179  ax-pr 5301
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-br 5036  df-opab 5098  df-xp 5533  df-rel 5534  df-cnv 5535  df-dm 5537  df-rn 5538  df-res 5539  df-refrel 36218
This theorem is referenced by:  eqvreleq  36303
  Copyright terms: Public domain W3C validator