| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > refreleq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for reflexive relation. (Contributed by Peter Mazsa, 15-Apr-2019.) (Revised by Peter Mazsa, 23-Sep-2021.) |
| Ref | Expression |
|---|---|
| refreleq | ⊢ (𝑅 = 𝑆 → ( RefRel 𝑅 ↔ RefRel 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmeq 5849 | . . . . . 6 ⊢ (𝑅 = 𝑆 → dom 𝑅 = dom 𝑆) | |
| 2 | rneq 5882 | . . . . . 6 ⊢ (𝑅 = 𝑆 → ran 𝑅 = ran 𝑆) | |
| 3 | 1, 2 | xpeq12d 5652 | . . . . 5 ⊢ (𝑅 = 𝑆 → (dom 𝑅 × ran 𝑅) = (dom 𝑆 × ran 𝑆)) |
| 4 | 3 | ineq2d 4169 | . . . 4 ⊢ (𝑅 = 𝑆 → ( I ∩ (dom 𝑅 × ran 𝑅)) = ( I ∩ (dom 𝑆 × ran 𝑆))) |
| 5 | id 22 | . . . 4 ⊢ (𝑅 = 𝑆 → 𝑅 = 𝑆) | |
| 6 | 4, 5 | sseq12d 3964 | . . 3 ⊢ (𝑅 = 𝑆 → (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ↔ ( I ∩ (dom 𝑆 × ran 𝑆)) ⊆ 𝑆)) |
| 7 | releq 5723 | . . 3 ⊢ (𝑅 = 𝑆 → (Rel 𝑅 ↔ Rel 𝑆)) | |
| 8 | 6, 7 | anbi12d 632 | . 2 ⊢ (𝑅 = 𝑆 → ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅) ↔ (( I ∩ (dom 𝑆 × ran 𝑆)) ⊆ 𝑆 ∧ Rel 𝑆))) |
| 9 | dfrefrel2 38680 | . 2 ⊢ ( RefRel 𝑅 ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅)) | |
| 10 | dfrefrel2 38680 | . 2 ⊢ ( RefRel 𝑆 ↔ (( I ∩ (dom 𝑆 × ran 𝑆)) ⊆ 𝑆 ∧ Rel 𝑆)) | |
| 11 | 8, 9, 10 | 3bitr4g 314 | 1 ⊢ (𝑅 = 𝑆 → ( RefRel 𝑅 ↔ RefRel 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∩ cin 3897 ⊆ wss 3898 I cid 5515 × cxp 5619 dom cdm 5621 ran crn 5622 Rel wrel 5626 RefRel wrefrel 38301 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-cnv 5629 df-dm 5631 df-rn 5632 df-res 5633 df-refrel 38677 |
| This theorem is referenced by: eqvreleq 38771 |
| Copyright terms: Public domain | W3C validator |