Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > refreleq | Structured version Visualization version GIF version |
Description: Equality theorem for reflexive relation. (Contributed by Peter Mazsa, 15-Apr-2019.) (Revised by Peter Mazsa, 23-Sep-2021.) |
Ref | Expression |
---|---|
refreleq | ⊢ (𝑅 = 𝑆 → ( RefRel 𝑅 ↔ RefRel 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmeq 5839 | . . . . . 6 ⊢ (𝑅 = 𝑆 → dom 𝑅 = dom 𝑆) | |
2 | rneq 5871 | . . . . . 6 ⊢ (𝑅 = 𝑆 → ran 𝑅 = ran 𝑆) | |
3 | 1, 2 | xpeq12d 5645 | . . . . 5 ⊢ (𝑅 = 𝑆 → (dom 𝑅 × ran 𝑅) = (dom 𝑆 × ran 𝑆)) |
4 | 3 | ineq2d 4158 | . . . 4 ⊢ (𝑅 = 𝑆 → ( I ∩ (dom 𝑅 × ran 𝑅)) = ( I ∩ (dom 𝑆 × ran 𝑆))) |
5 | id 22 | . . . 4 ⊢ (𝑅 = 𝑆 → 𝑅 = 𝑆) | |
6 | 4, 5 | sseq12d 3964 | . . 3 ⊢ (𝑅 = 𝑆 → (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ↔ ( I ∩ (dom 𝑆 × ran 𝑆)) ⊆ 𝑆)) |
7 | releq 5712 | . . 3 ⊢ (𝑅 = 𝑆 → (Rel 𝑅 ↔ Rel 𝑆)) | |
8 | 6, 7 | anbi12d 631 | . 2 ⊢ (𝑅 = 𝑆 → ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅) ↔ (( I ∩ (dom 𝑆 × ran 𝑆)) ⊆ 𝑆 ∧ Rel 𝑆))) |
9 | dfrefrel2 36775 | . 2 ⊢ ( RefRel 𝑅 ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅)) | |
10 | dfrefrel2 36775 | . 2 ⊢ ( RefRel 𝑆 ↔ (( I ∩ (dom 𝑆 × ran 𝑆)) ⊆ 𝑆 ∧ Rel 𝑆)) | |
11 | 8, 9, 10 | 3bitr4g 313 | 1 ⊢ (𝑅 = 𝑆 → ( RefRel 𝑅 ↔ RefRel 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∩ cin 3896 ⊆ wss 3897 I cid 5511 × cxp 5612 dom cdm 5614 ran crn 5615 Rel wrel 5619 RefRel wrefrel 36437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pr 5369 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-refrel 36772 |
This theorem is referenced by: eqvreleq 36862 |
Copyright terms: Public domain | W3C validator |