| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > refreleq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for reflexive relation. (Contributed by Peter Mazsa, 15-Apr-2019.) (Revised by Peter Mazsa, 23-Sep-2021.) |
| Ref | Expression |
|---|---|
| refreleq | ⊢ (𝑅 = 𝑆 → ( RefRel 𝑅 ↔ RefRel 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmeq 5870 | . . . . . 6 ⊢ (𝑅 = 𝑆 → dom 𝑅 = dom 𝑆) | |
| 2 | rneq 5903 | . . . . . 6 ⊢ (𝑅 = 𝑆 → ran 𝑅 = ran 𝑆) | |
| 3 | 1, 2 | xpeq12d 5672 | . . . . 5 ⊢ (𝑅 = 𝑆 → (dom 𝑅 × ran 𝑅) = (dom 𝑆 × ran 𝑆)) |
| 4 | 3 | ineq2d 4186 | . . . 4 ⊢ (𝑅 = 𝑆 → ( I ∩ (dom 𝑅 × ran 𝑅)) = ( I ∩ (dom 𝑆 × ran 𝑆))) |
| 5 | id 22 | . . . 4 ⊢ (𝑅 = 𝑆 → 𝑅 = 𝑆) | |
| 6 | 4, 5 | sseq12d 3983 | . . 3 ⊢ (𝑅 = 𝑆 → (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ↔ ( I ∩ (dom 𝑆 × ran 𝑆)) ⊆ 𝑆)) |
| 7 | releq 5742 | . . 3 ⊢ (𝑅 = 𝑆 → (Rel 𝑅 ↔ Rel 𝑆)) | |
| 8 | 6, 7 | anbi12d 632 | . 2 ⊢ (𝑅 = 𝑆 → ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅) ↔ (( I ∩ (dom 𝑆 × ran 𝑆)) ⊆ 𝑆 ∧ Rel 𝑆))) |
| 9 | dfrefrel2 38513 | . 2 ⊢ ( RefRel 𝑅 ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅)) | |
| 10 | dfrefrel2 38513 | . 2 ⊢ ( RefRel 𝑆 ↔ (( I ∩ (dom 𝑆 × ran 𝑆)) ⊆ 𝑆 ∧ Rel 𝑆)) | |
| 11 | 8, 9, 10 | 3bitr4g 314 | 1 ⊢ (𝑅 = 𝑆 → ( RefRel 𝑅 ↔ RefRel 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∩ cin 3916 ⊆ wss 3917 I cid 5535 × cxp 5639 dom cdm 5641 ran crn 5642 Rel wrel 5646 RefRel wrefrel 38182 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-refrel 38510 |
| This theorem is referenced by: eqvreleq 38600 |
| Copyright terms: Public domain | W3C validator |