Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refreleq Structured version   Visualization version   GIF version

Theorem refreleq 38686
Description: Equality theorem for reflexive relation. (Contributed by Peter Mazsa, 15-Apr-2019.) (Revised by Peter Mazsa, 23-Sep-2021.)
Assertion
Ref Expression
refreleq (𝑅 = 𝑆 → ( RefRel 𝑅 ↔ RefRel 𝑆))

Proof of Theorem refreleq
StepHypRef Expression
1 dmeq 5849 . . . . . 6 (𝑅 = 𝑆 → dom 𝑅 = dom 𝑆)
2 rneq 5882 . . . . . 6 (𝑅 = 𝑆 → ran 𝑅 = ran 𝑆)
31, 2xpeq12d 5652 . . . . 5 (𝑅 = 𝑆 → (dom 𝑅 × ran 𝑅) = (dom 𝑆 × ran 𝑆))
43ineq2d 4169 . . . 4 (𝑅 = 𝑆 → ( I ∩ (dom 𝑅 × ran 𝑅)) = ( I ∩ (dom 𝑆 × ran 𝑆)))
5 id 22 . . . 4 (𝑅 = 𝑆𝑅 = 𝑆)
64, 5sseq12d 3964 . . 3 (𝑅 = 𝑆 → (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ↔ ( I ∩ (dom 𝑆 × ran 𝑆)) ⊆ 𝑆))
7 releq 5723 . . 3 (𝑅 = 𝑆 → (Rel 𝑅 ↔ Rel 𝑆))
86, 7anbi12d 632 . 2 (𝑅 = 𝑆 → ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅) ↔ (( I ∩ (dom 𝑆 × ran 𝑆)) ⊆ 𝑆 ∧ Rel 𝑆)))
9 dfrefrel2 38680 . 2 ( RefRel 𝑅 ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅))
10 dfrefrel2 38680 . 2 ( RefRel 𝑆 ↔ (( I ∩ (dom 𝑆 × ran 𝑆)) ⊆ 𝑆 ∧ Rel 𝑆))
118, 9, 103bitr4g 314 1 (𝑅 = 𝑆 → ( RefRel 𝑅 ↔ RefRel 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  cin 3897  wss 3898   I cid 5515   × cxp 5619  dom cdm 5621  ran crn 5622  Rel wrel 5626   RefRel wrefrel 38301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-xp 5627  df-rel 5628  df-cnv 5629  df-dm 5631  df-rn 5632  df-res 5633  df-refrel 38677
This theorem is referenced by:  eqvreleq  38771
  Copyright terms: Public domain W3C validator