Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > refreleq | Structured version Visualization version GIF version |
Description: Equality theorem for reflexive relation. (Contributed by Peter Mazsa, 15-Apr-2019.) (Revised by Peter Mazsa, 23-Sep-2021.) |
Ref | Expression |
---|---|
refreleq | ⊢ (𝑅 = 𝑆 → ( RefRel 𝑅 ↔ RefRel 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmeq 5825 | . . . . . 6 ⊢ (𝑅 = 𝑆 → dom 𝑅 = dom 𝑆) | |
2 | rneq 5857 | . . . . . 6 ⊢ (𝑅 = 𝑆 → ran 𝑅 = ran 𝑆) | |
3 | 1, 2 | xpeq12d 5631 | . . . . 5 ⊢ (𝑅 = 𝑆 → (dom 𝑅 × ran 𝑅) = (dom 𝑆 × ran 𝑆)) |
4 | 3 | ineq2d 4152 | . . . 4 ⊢ (𝑅 = 𝑆 → ( I ∩ (dom 𝑅 × ran 𝑅)) = ( I ∩ (dom 𝑆 × ran 𝑆))) |
5 | id 22 | . . . 4 ⊢ (𝑅 = 𝑆 → 𝑅 = 𝑆) | |
6 | 4, 5 | sseq12d 3959 | . . 3 ⊢ (𝑅 = 𝑆 → (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ↔ ( I ∩ (dom 𝑆 × ran 𝑆)) ⊆ 𝑆)) |
7 | releq 5698 | . . 3 ⊢ (𝑅 = 𝑆 → (Rel 𝑅 ↔ Rel 𝑆)) | |
8 | 6, 7 | anbi12d 632 | . 2 ⊢ (𝑅 = 𝑆 → ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅) ↔ (( I ∩ (dom 𝑆 × ran 𝑆)) ⊆ 𝑆 ∧ Rel 𝑆))) |
9 | dfrefrel2 36729 | . 2 ⊢ ( RefRel 𝑅 ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅)) | |
10 | dfrefrel2 36729 | . 2 ⊢ ( RefRel 𝑆 ↔ (( I ∩ (dom 𝑆 × ran 𝑆)) ⊆ 𝑆 ∧ Rel 𝑆)) | |
11 | 8, 9, 10 | 3bitr4g 314 | 1 ⊢ (𝑅 = 𝑆 → ( RefRel 𝑅 ↔ RefRel 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ∩ cin 3891 ⊆ wss 3892 I cid 5499 × cxp 5598 dom cdm 5600 ran crn 5601 Rel wrel 5605 RefRel wrefrel 36387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-xp 5606 df-rel 5607 df-cnv 5608 df-dm 5610 df-rn 5611 df-res 5612 df-refrel 36726 |
This theorem is referenced by: eqvreleq 36816 |
Copyright terms: Public domain | W3C validator |