Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refreleq Structured version   Visualization version   GIF version

Theorem refreleq 37904
Description: Equality theorem for reflexive relation. (Contributed by Peter Mazsa, 15-Apr-2019.) (Revised by Peter Mazsa, 23-Sep-2021.)
Assertion
Ref Expression
refreleq (𝑅 = 𝑆 → ( RefRel 𝑅 ↔ RefRel 𝑆))

Proof of Theorem refreleq
StepHypRef Expression
1 dmeq 5897 . . . . . 6 (𝑅 = 𝑆 → dom 𝑅 = dom 𝑆)
2 rneq 5929 . . . . . 6 (𝑅 = 𝑆 → ran 𝑅 = ran 𝑆)
31, 2xpeq12d 5700 . . . . 5 (𝑅 = 𝑆 → (dom 𝑅 × ran 𝑅) = (dom 𝑆 × ran 𝑆))
43ineq2d 4207 . . . 4 (𝑅 = 𝑆 → ( I ∩ (dom 𝑅 × ran 𝑅)) = ( I ∩ (dom 𝑆 × ran 𝑆)))
5 id 22 . . . 4 (𝑅 = 𝑆𝑅 = 𝑆)
64, 5sseq12d 4010 . . 3 (𝑅 = 𝑆 → (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ↔ ( I ∩ (dom 𝑆 × ran 𝑆)) ⊆ 𝑆))
7 releq 5769 . . 3 (𝑅 = 𝑆 → (Rel 𝑅 ↔ Rel 𝑆))
86, 7anbi12d 630 . 2 (𝑅 = 𝑆 → ((( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅) ↔ (( I ∩ (dom 𝑆 × ran 𝑆)) ⊆ 𝑆 ∧ Rel 𝑆)))
9 dfrefrel2 37898 . 2 ( RefRel 𝑅 ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ 𝑅 ∧ Rel 𝑅))
10 dfrefrel2 37898 . 2 ( RefRel 𝑆 ↔ (( I ∩ (dom 𝑆 × ran 𝑆)) ⊆ 𝑆 ∧ Rel 𝑆))
118, 9, 103bitr4g 314 1 (𝑅 = 𝑆 → ( RefRel 𝑅 ↔ RefRel 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  cin 3942  wss 3943   I cid 5566   × cxp 5667  dom cdm 5669  ran crn 5670  Rel wrel 5674   RefRel wrefrel 37562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-br 5142  df-opab 5204  df-xp 5675  df-rel 5676  df-cnv 5677  df-dm 5679  df-rn 5680  df-res 5681  df-refrel 37895
This theorem is referenced by:  eqvreleq  37985
  Copyright terms: Public domain W3C validator