| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reli | Structured version Visualization version GIF version | ||
| Description: The identity relation is a relation. Part of Exercise 4.12(p) of [Mendelson] p. 235. (Contributed by NM, 26-Apr-1998.) (Revised by Mario Carneiro, 21-Dec-2013.) |
| Ref | Expression |
|---|---|
| reli | ⊢ Rel I |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-id 5536 | . 2 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
| 2 | 1 | relopabiv 5786 | 1 ⊢ Rel I |
| Colors of variables: wff setvar class |
| Syntax hints: I cid 5535 Rel wrel 5646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 |
| This theorem is referenced by: ideqg 5818 issetid 5821 iss 6009 intirr 6094 elid 6175 funi 6551 f1ovi 6842 idssen 8971 symgcom2 33048 idsset 35885 bj-ideqgALT 37153 bj-ideqb 37154 bj-ideqg1ALT 37160 bj-opelidb1ALT 37161 bj-elid5 37164 brid 38301 iss2 38333 refrelid 38520 idsymrel 38559 disjALTVid 38754 |
| Copyright terms: Public domain | W3C validator |