MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reli Structured version   Visualization version   GIF version

Theorem reli 5765
Description: The identity relation is a relation. Part of Exercise 4.12(p) of [Mendelson] p. 235. (Contributed by NM, 26-Apr-1998.) (Revised by Mario Carneiro, 21-Dec-2013.)
Assertion
Ref Expression
reli Rel I

Proof of Theorem reli
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-id 5509 . 2 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
21relopabiv 5759 1 Rel I
Colors of variables: wff setvar class
Syntax hints:   I cid 5508  Rel wrel 5619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-ss 3914  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621
This theorem is referenced by:  ideqg  5790  issetid  5793  iss  5983  intirr  6064  elid  6146  funi  6513  f1ovi  6802  idssen  8919  symgcom2  33053  idsset  35932  bj-ideqgALT  37202  bj-ideqb  37203  bj-ideqg1ALT  37209  bj-opelidb1ALT  37210  bj-elid5  37213  brid  38354  iss2  38386  dfsucmap3  38486  refrelid  38624  idsymrel  38667  disjALTVid  38863
  Copyright terms: Public domain W3C validator