![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reli | Structured version Visualization version GIF version |
Description: The identity relation is a relation. Part of Exercise 4.12(p) of [Mendelson] p. 235. (Contributed by NM, 26-Apr-1998.) (Revised by Mario Carneiro, 21-Dec-2013.) |
Ref | Expression |
---|---|
reli | ⊢ Rel I |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-id 5575 | . 2 ⊢ I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦} | |
2 | 1 | relopabiv 5821 | 1 ⊢ Rel I |
Colors of variables: wff setvar class |
Syntax hints: I cid 5574 Rel wrel 5682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-in 3956 df-ss 3966 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 |
This theorem is referenced by: ideqg 5852 issetid 5855 iss 6036 intirr 6120 elid 6199 funi 6581 f1ovi 6873 idssen 8993 symgcom2 32245 idsset 34862 bj-ideqgALT 36039 bj-ideqb 36040 bj-ideqg1ALT 36046 bj-opelidb1ALT 36047 bj-elid5 36050 brid 37175 iss2 37213 refrelid 37392 idsymrel 37431 disjALTVid 37625 |
Copyright terms: Public domain | W3C validator |