MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reli Structured version   Visualization version   GIF version

Theorem reli 5828
Description: The identity relation is a relation. Part of Exercise 4.12(p) of [Mendelson] p. 235. (Contributed by NM, 26-Apr-1998.) (Revised by Mario Carneiro, 21-Dec-2013.)
Assertion
Ref Expression
reli Rel I

Proof of Theorem reli
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-id 5576 . 2 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
21relopabiv 5822 1 Rel I
Colors of variables: wff setvar class
Syntax hints:   I cid 5575  Rel wrel 5683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-v 3463  df-ss 3961  df-opab 5212  df-id 5576  df-xp 5684  df-rel 5685
This theorem is referenced by:  ideqg  5854  issetid  5857  iss  6040  intirr  6125  elid  6205  funi  6586  f1ovi  6877  idssen  9018  symgcom2  32897  idsset  35614  bj-ideqgALT  36765  bj-ideqb  36766  bj-ideqg1ALT  36772  bj-opelidb1ALT  36773  bj-elid5  36776  brid  37905  iss2  37943  refrelid  38121  idsymrel  38160  disjALTVid  38354
  Copyright terms: Public domain W3C validator