MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reli Structured version   Visualization version   GIF version

Theorem reli 5824
Description: The identity relation is a relation. Part of Exercise 4.12(p) of [Mendelson] p. 235. (Contributed by NM, 26-Apr-1998.) (Revised by Mario Carneiro, 21-Dec-2013.)
Assertion
Ref Expression
reli Rel I

Proof of Theorem reli
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-id 5573 . 2 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
21relopabiv 5818 1 Rel I
Colors of variables: wff setvar class
Syntax hints:   I cid 5572  Rel wrel 5680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-in 3954  df-ss 3964  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682
This theorem is referenced by:  ideqg  5849  issetid  5852  iss  6033  intirr  6116  elid  6195  funi  6577  f1ovi  6869  idssen  8989  symgcom2  32232  idsset  34850  bj-ideqgALT  36027  bj-ideqb  36028  bj-ideqg1ALT  36034  bj-opelidb1ALT  36035  bj-elid5  36038  brid  37163  iss2  37201  refrelid  37380  idsymrel  37419  disjALTVid  37613
  Copyright terms: Public domain W3C validator