![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reli | Structured version Visualization version GIF version |
Description: The identity relation is a relation. Part of Exercise 4.12(p) of [Mendelson] p. 235. (Contributed by NM, 26-Apr-1998.) (Revised by Mario Carneiro, 21-Dec-2013.) |
Ref | Expression |
---|---|
reli | ⊢ Rel I |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-id 5220 | . 2 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
2 | 1 | relopabi 5449 | 1 ⊢ Rel I |
Colors of variables: wff setvar class |
Syntax hints: I cid 5219 Rel wrel 5317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-opab 4906 df-id 5220 df-xp 5318 df-rel 5319 |
This theorem is referenced by: ideqg 5477 issetid 5480 iss 5659 elid 5671 intirr 5732 funi 6133 f1ovi 6394 idssen 8240 idsset 32510 bj-elid 33583 brid 34572 iss2 34606 refrelid 34765 idsymrel 34801 |
Copyright terms: Public domain | W3C validator |