Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reli | Structured version Visualization version GIF version |
Description: The identity relation is a relation. Part of Exercise 4.12(p) of [Mendelson] p. 235. (Contributed by NM, 26-Apr-1998.) (Revised by Mario Carneiro, 21-Dec-2013.) |
Ref | Expression |
---|---|
reli | ⊢ Rel I |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-id 5489 | . 2 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
2 | 1 | relopabiv 5730 | 1 ⊢ Rel I |
Colors of variables: wff setvar class |
Syntax hints: I cid 5488 Rel wrel 5594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 |
This theorem is referenced by: ideqg 5760 issetid 5763 iss 5943 intirr 6023 elid 6102 funi 6466 f1ovi 6755 idssen 8785 symgcom2 31353 idsset 34192 bj-ideqgALT 35329 bj-ideqb 35330 bj-ideqg1ALT 35336 bj-opelidb1ALT 35337 bj-elid5 35340 brid 36442 iss2 36479 refrelid 36639 idsymrel 36675 disjALTVid 36863 |
Copyright terms: Public domain | W3C validator |