| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reli | Structured version Visualization version GIF version | ||
| Description: The identity relation is a relation. Part of Exercise 4.12(p) of [Mendelson] p. 235. (Contributed by NM, 26-Apr-1998.) (Revised by Mario Carneiro, 21-Dec-2013.) |
| Ref | Expression |
|---|---|
| reli | ⊢ Rel I |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-id 5509 | . 2 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
| 2 | 1 | relopabiv 5759 | 1 ⊢ Rel I |
| Colors of variables: wff setvar class |
| Syntax hints: I cid 5508 Rel wrel 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3914 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 |
| This theorem is referenced by: ideqg 5790 issetid 5793 iss 5983 intirr 6064 elid 6146 funi 6513 f1ovi 6802 idssen 8919 symgcom2 33053 idsset 35932 bj-ideqgALT 37202 bj-ideqb 37203 bj-ideqg1ALT 37209 bj-opelidb1ALT 37210 bj-elid5 37213 brid 38354 iss2 38386 dfsucmap3 38486 refrelid 38624 idsymrel 38667 disjALTVid 38863 |
| Copyright terms: Public domain | W3C validator |