![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reli | Structured version Visualization version GIF version |
Description: The identity relation is a relation. Part of Exercise 4.12(p) of [Mendelson] p. 235. (Contributed by NM, 26-Apr-1998.) (Revised by Mario Carneiro, 21-Dec-2013.) |
Ref | Expression |
---|---|
reli | ⊢ Rel I |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-id 5593 | . 2 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
2 | 1 | relopabiv 5844 | 1 ⊢ Rel I |
Colors of variables: wff setvar class |
Syntax hints: I cid 5592 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 |
This theorem is referenced by: ideqg 5876 issetid 5879 iss 6064 intirr 6150 elid 6230 funi 6610 f1ovi 6901 idssen 9057 symgcom2 33077 idsset 35854 bj-ideqgALT 37124 bj-ideqb 37125 bj-ideqg1ALT 37131 bj-opelidb1ALT 37132 bj-elid5 37135 brid 38262 iss2 38300 refrelid 38478 idsymrel 38517 disjALTVid 38711 |
Copyright terms: Public domain | W3C validator |