![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reli | Structured version Visualization version GIF version |
Description: The identity relation is a relation. Part of Exercise 4.12(p) of [Mendelson] p. 235. (Contributed by NM, 26-Apr-1998.) (Revised by Mario Carneiro, 21-Dec-2013.) |
Ref | Expression |
---|---|
reli | ⊢ Rel I |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-id 5573 | . 2 ⊢ I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦} | |
2 | 1 | relopabiv 5818 | 1 ⊢ Rel I |
Colors of variables: wff setvar class |
Syntax hints: I cid 5572 Rel wrel 5680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-in 3954 df-ss 3964 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 |
This theorem is referenced by: ideqg 5849 issetid 5852 iss 6033 intirr 6116 elid 6195 funi 6577 f1ovi 6869 idssen 8989 symgcom2 32232 idsset 34850 bj-ideqgALT 36027 bj-ideqb 36028 bj-ideqg1ALT 36034 bj-opelidb1ALT 36035 bj-elid5 36038 brid 37163 iss2 37201 refrelid 37380 idsymrel 37419 disjALTVid 37613 |
Copyright terms: Public domain | W3C validator |