| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reli | Structured version Visualization version GIF version | ||
| Description: The identity relation is a relation. Part of Exercise 4.12(p) of [Mendelson] p. 235. (Contributed by NM, 26-Apr-1998.) (Revised by Mario Carneiro, 21-Dec-2013.) |
| Ref | Expression |
|---|---|
| reli | ⊢ Rel I |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-id 5533 | . 2 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
| 2 | 1 | relopabiv 5783 | 1 ⊢ Rel I |
| Colors of variables: wff setvar class |
| Syntax hints: I cid 5532 Rel wrel 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 |
| This theorem is referenced by: ideqg 5815 issetid 5818 iss 6006 intirr 6091 elid 6172 funi 6548 f1ovi 6839 idssen 8968 symgcom2 33041 idsset 35878 bj-ideqgALT 37146 bj-ideqb 37147 bj-ideqg1ALT 37153 bj-opelidb1ALT 37154 bj-elid5 37157 brid 38294 iss2 38326 refrelid 38513 idsymrel 38552 disjALTVid 38747 |
| Copyright terms: Public domain | W3C validator |