Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reli | Structured version Visualization version GIF version |
Description: The identity relation is a relation. Part of Exercise 4.12(p) of [Mendelson] p. 235. (Contributed by NM, 26-Apr-1998.) (Revised by Mario Carneiro, 21-Dec-2013.) |
Ref | Expression |
---|---|
reli | ⊢ Rel I |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-id 5490 | . 2 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
2 | 1 | relopabiv 5729 | 1 ⊢ Rel I |
Colors of variables: wff setvar class |
Syntax hints: I cid 5489 Rel wrel 5595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-v 3433 df-in 3899 df-ss 3909 df-opab 5142 df-id 5490 df-xp 5596 df-rel 5597 |
This theorem is referenced by: ideqg 5759 issetid 5762 iss 5942 intirr 6022 elid 6101 funi 6464 f1ovi 6752 idssen 8768 symgcom2 31349 idsset 34188 bj-ideqgALT 35325 bj-ideqb 35326 bj-ideqg1ALT 35332 bj-opelidb1ALT 35333 bj-elid5 35336 brid 36438 iss2 36475 refrelid 36635 idsymrel 36671 disjALTVid 36859 |
Copyright terms: Public domain | W3C validator |