![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reli | Structured version Visualization version GIF version |
Description: The identity relation is a relation. Part of Exercise 4.12(p) of [Mendelson] p. 235. (Contributed by NM, 26-Apr-1998.) (Revised by Mario Carneiro, 21-Dec-2013.) |
Ref | Expression |
---|---|
reli | ⊢ Rel I |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-id 5583 | . 2 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
2 | 1 | relopabiv 5833 | 1 ⊢ Rel I |
Colors of variables: wff setvar class |
Syntax hints: I cid 5582 Rel wrel 5694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-ss 3980 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 |
This theorem is referenced by: ideqg 5865 issetid 5868 iss 6055 intirr 6141 elid 6221 funi 6600 f1ovi 6888 idssen 9036 symgcom2 33087 idsset 35872 bj-ideqgALT 37141 bj-ideqb 37142 bj-ideqg1ALT 37148 bj-opelidb1ALT 37149 bj-elid5 37152 brid 38288 iss2 38326 refrelid 38504 idsymrel 38543 disjALTVid 38737 |
Copyright terms: Public domain | W3C validator |