Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reli | Structured version Visualization version GIF version |
Description: The identity relation is a relation. Part of Exercise 4.12(p) of [Mendelson] p. 235. (Contributed by NM, 26-Apr-1998.) (Revised by Mario Carneiro, 21-Dec-2013.) |
Ref | Expression |
---|---|
reli | ⊢ Rel I |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-id 5480 | . 2 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
2 | 1 | relopabiv 5719 | 1 ⊢ Rel I |
Colors of variables: wff setvar class |
Syntax hints: I cid 5479 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 |
This theorem is referenced by: ideqg 5749 issetid 5752 iss 5932 intirr 6012 elid 6091 funi 6450 f1ovi 6738 idssen 8740 symgcom2 31255 idsset 34119 bj-ideqgALT 35256 bj-ideqb 35257 bj-ideqg1ALT 35263 bj-opelidb1ALT 35264 bj-elid5 35267 brid 36369 iss2 36406 refrelid 36566 idsymrel 36602 disjALTVid 36790 |
Copyright terms: Public domain | W3C validator |